
MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 1 of 19

MTIMESX

Fast Matrix Multiply for MATLAB®
With Multi-Dimensional and OpenMP® Support

Version 1.41

February 23, 2011

By James Tursa

© 2009, 2010, 2011 by James Tursa, All Rights Reserved

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 2 of 19

 Contents

1) Introduction …………………….. 3
2) Operating Modes ……………… 3
3) Multi-Threading 6
4) Syntax ………………………….. 8
5) Multi-Dimensional Support …… 10
6) Other Types ……………………. 12
7) Philosophy ……………………... 12
8) BLAS Routines Used …………. 13
9) Supported Operations ……...… 14
10) Speed Improvements ………… 14
11) List of Included Files …………. 16
12) Testing ……………………….… 17
13) Upgrades …………………….… 18
14) MTIMESX Logo ….....………… 18
15) Contact the Author ………….… 18
16) Acknowledgments 19
17) Release Notes 19

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 3 of 19

 1) Introduction

MTIMESX is a fast general purpose matrix and scalar multiply routine that utilizes BLAS calls and
custom code to perform the calculations. MTIMESX also has extended support for n-Dimensional
(nD, n > 2) arrays, treating these as arrays of 2D matrices for the purposes of matrix operations.
BLAS stands for Basic Linear Algebra Subroutines. The BLAS is a library of highly optimized
routines for various scalar-vector, vector-vector, matrix-vector, and matrix-matrix linear algebra
operations. MATLAB makes calls to their BLAS library in the background whenever you do a
matrix multiply. MTIMESX links to and calls these same BLAS library routines directly.

"Doesn't MATLAB already do this?" For 2D matrices, yes, it does. However, MATLAB does not
always implement the most efficient algorithms for memory access, and MATLAB does not
always take full advantage of symmetric and conjugate cases. MTIMESX attempts to do both of
these to the fullest extent possible, and in some cases can outperform MATLAB by 300% - 400%
for speed (yes, you read that right, 3x – 4x faster). For nD matrices (treating them as arrays of 2D
matrices), MATLAB does not have direct support for this. One is forced to write loops to
accomplish the same thing that MTIMESX can do faster (50x - 100x in some cases). NOTE: The
MATLAB intrinsic function for matrix multiplication is called mtimes. i.e., when you type the
expression A * B, MATLAB actually calls the function mtimes(A,B). In all of the discussions
below, mtimes (without the x) always refers to the MATLAB built-in matrix multiply operation.

 2) Operating Modes

MTIMESX has three basic methods for calculating results: BLAS calls, C coded loops, and
OpenMP multi-threaded C coded loops. MTIMESX has six operating modes that determine which
of these methods is used. They are as follows:

'BLAS' mode

Forces MTIMESX to do all calculations with BLAS calls. This mode attempts to reproduce the
MATLAB intrinsic function mtimes results exactly by calling BLAS library routines (if available) to
do all calculations regardless of speed implications. So all scalar multiplies, vector-vector
multiplies, and matrix-vector multiplies are performed by the BLAS routines. All of the
calculations involving full double or single matrices have BLAS routines available to do the work.
In addition, the (scalar) * (sparse) calculation is done with BLAS calls in this mode. If the BLAS
routines are multi-threaded on your machine then you will get the benefit of this multi-threading
when you use MTIMESX in this mode. Note that MTIMESX does not directly support generic
sparse matrix multiplies, but instead just calls the MATLAB intrinsic function mtimes.

'LOOPS' mode

Forces MTIMESX to do all calculations that have C code loops available to use that code. This
mode attempts to reproduce the MATLAB intrinsic function mtimes results closely but not exactly
by performing some of the calculations with C code loops instead of BLAS calls regardless of
speed implications. If no C code loop method is available for a particular calculation, such as a
generic matrix multiply, then BLAS calls will be used. Note that 'LOOPS' mode never uses
OpenMP multi-threading for the C code loops. The operations that have C code loops available to
do the calculation are (unless otherwise noted, results will not match MATLAB exactly):

 scalar * array (results will match MATLAB exactly)
 vector outer product (results will match MATLAB exactly)
 vector inner product (i.e., dot product)
 vector * matrix (using a series of dot product calculations)
 matrix' * vector (using a series of dot product calculations)
 matrix.' * vector (using a series of dot product calculations)
 (4x4 or smaller matrix) * (4x4 or smaller matrix) (using inline unrolled loops)

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 4 of 19

'LOOPSOMP' mode

Forces MTIMESX to do all calculations that have OpenMP multi-threaded C code loops available
to use that code. This mode attempts to reproduce the MATLAB intrinsic function mtimes results
closely but not exactly by performing some of the calculations with OpenMP multi-threaded C
code loops instead of BLAS calls. The 'LOOPSOMP' mode is basically the same as the 'LOOPS'
mode as far as the basic underlying C code is concerned. However, the 'LOOPSOMP' mode will
split up and multi-thread the calculation using OpenMP pragmas. As a result, the order of
operations will be different from the 'LOOPS' mode and you should not expect to get exactly the
same result as the 'LOOPS' mode. The user can control the number of threads requested up to
the number of processors available. MTIMESX does not use atomic variable updates nor does it
use variable reduction techniques to produce results. Instead, MTIMESX will store results of each
individual thread separately and then when all threads are complete the final result will be
calculated by combining the individual thread results using a pre-defined order. Thus you should
be guaranteed to get the exact same result from run to run as long as the inputs are the same
and the number of threads used is the same. The result will not depend on the actual order that
the individual threads execute. This would not be the case if atomic updates or reduction
techniques were used. Note that 'LOOPSOMP' mode is only available if you have compiled
MTIMESX with an OpenMP compliant compiler such as gcc, Intel, or the latest MSVC compilers.
Unfortunately the LCC compiler that is shipped with MATLAB is not an OpenMP compliant
compiler, so you will not have this mode available if you use the LCC compiler. The
'LOOPSOMP' mode reverts to the 'LOOPS' mode if you compiled with a non-OpenMP compliant
compiler. You can find a list of OpenMP compliant compilers here:

 http://openmp.org/wp/openmp-compilers/

Not all of the (4x4 or smaller matrix) loops cases are multi-threaded. The only cases that are
multi-threaded are the following, and even these are only multi-threaded for the real nD case and
if there is no singleton expansion involved (this may be expanded in future versions):

 (4x4 or smaller matrix) * (4x1 or smaller vector)
 (1x4 or smaller vector) * (4x4 or smaller matrix)

To set the number of requested threads to use in the 'LOOPSOMP' mode, use one of the
'OMP_SET_NUM_THREADS' directives (see next section). If you don't set the number of
threads to request, MTIMESX will automatically set it to the number of processors available.

The next three modes are special combinations of the above three basic modes.

'MATLAB' mode (the default when MTIMESX is first run)

Forces MTIMESX to use the fastest 'BLAS' or 'LOOPS' method that matches MATLAB exactly.
'MATLAB' mode attempts to reproduce the MATLAB intrinsic function mtimes results exactly
using whichever method is likely to be faster as long as the results match mtimes exactly. When
there was a choice between faster code that did not match the MATLAB intrinsic mtimes function
results exactly vs slower code that did match the MATLAB intrinsic mtimes function results
exactly, the choice was made to use the slower code. Speed improvements were only made in
cases that did not cause a mismatch. Caveat: Only tested on a 32-bit WinXP PC with later
versions of MATLAB (R2006b - R2010a). This works, but MATLAB may use different algorithms
for mtimes in earlier versions or on other machines that were unavailable for testing, so even this
mode may not match the MATLAB intrinsic mtimes function exactly in these other cases.
‘MATLAB’ mode is the default mode when MTIMESX is first loaded and executed (i.e., the first
time you use MTIMESX in your MATLAB session and the first time you use MTIMESX after
clearing it from memory). Also note that the choice of method for (scalar) * (array) and vector
outer product may not be the optimal choice for speed on your particular platform. If you find that
to be the case you can force a specific method by selecting 'BLAS', 'LOOPS', or 'LOOPSOMP'
instead of 'MATLAB' for that particular calculation.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 5 of 19

'SPEED' mode

Forces MTIMESX to use the fastest 'BLAS' or 'LOOPS' method, regardless of whether or not it
matches MATLAB exactly. This mode attempts to reproduce the MATLAB intrinsic function
mtimes results closely, but not necessarily exactly, by selecting the faster of BLAS calls or C
code loops methods (if available). When there was a choice between faster code that did not
exactly match the MATLAB intrinsic mtimes function vs slower code that did match the MATLAB
intrinsic mtimes function, the choice was made to use the faster code. Speed improvements
were made in all cases that I could identify, even if they caused a slight mismatch with the
MATLAB intrinsic mtimes results. NOTE: The mismatches are the results of doing calculations in
a different order and are not indicative of being less accurate. Also note that the speed
improvements are highly dependent on the version of MATLAB you are running and the specific
compiler you are using. 'SPEED' mode never uses OpenMP multi-threaded C code loops to
perform calculations. Also note that the choice of BLAS calls vs C code loops made by MTIMESX
in 'SPEED' mode may not be optimal for your particular platform. If you find that to be the case
you can force a specific method by selecting 'BLAS' or 'LOOPS' instead of 'SPEED'.

'SPEEDOMP' mode

Forces MTIMESX to use the fastest 'BLAS', 'LOOPS', or 'LOOPSOMP' method, regardless of
whether or not it matches MATLAB exactly. This mode attempts to reproduce the MATLAB
intrinsic function mtimes results closely, but not necessarily exactly, by selecting the faster of
BLAS calls or C code loops methods (if available) or OpenMP multi-threaded C code loops (if
available). When there was a choice between faster code that did not exactly match the MATLAB
intrinsic mtimes function vs slower code that did match the MATLAB intrinsic mtimes function,
the choice was made to use the faster code. Speed improvements were made in all cases that I
could identify, even if they caused a slight mismatch with the MATLAB intrinsic mtimes results.
NOTE: The mismatches are the results of doing calculations in a different order and are not
indicative of being less accurate. Also note that the speed improvements are highly dependent on
the version of MATLAB you are running and the specific compiler you are using. Note that the
choice of BLAS calls vs C code loops vs OpenMP multi-threaded C code loops may not be
optimal for your particular platform. If you find that to be the case you can force a method by
selecting 'BLAS', 'LOOPS', or 'LOOPSOMP' instead of 'SPEEDOMP'. If you have not compiled
with an OpenMP compliant compiler then 'SPEEDOMP' mode reverts to 'SPEED' mode.

Which Mode Is Best?

That depends on your needs. If you want your results to match MATLAB exactly in all
circumstances, then use 'MATLAB' mode. If you are willing to give up exactly matching MATLAB
and want more speed, then use either 'SPEED' mode or 'SPEEDOMP' mode (if available). Note
that in some cases 'BLAS' or 'MATLAB' mode may actually be the fastest mode for a particular
calculation. I have attempted to make an educated guess as to the fastest methods to use in
'SPEED' and 'SPEEDOMP' modes, but results can vary quite a bit from machine to machine
depending on MATLAB version, computer in use, compiler used, and number of processors. For
example, OpenMP with MSVC 9 seems to work great on a 32-bit WinXP Intel Core 2 Duo
platform under MATLAB version R2010a, but can perform miserably on the same machine under
MATLAB version R2006b. There is apparently some type of OpenMP incompatibility or
interference with older versions of MATLAB. Thus, based on these testing experiences, I fully
expect that my choices will not always be optimal for speed across all platforms. So you may
need to experiment some with any specific calculation to determine which method is fastest. If
you do happen to find that MATLAB is significantly faster for any particular calculation, I would
appreciate getting an e-mail (see last section) letting me know the particulars so that I can
improve MTIMESX. You should be very cautious in using 'LOOPSOMP' mode since this may
force MTIMESX to use OpenMP inappropriately on small size matrices and can in those cases
easily increase the running time by a factor of 10x or more.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 6 of 19

 3) Multi-Threading

Which calculations in MTIMESX are Multi-Threaded?

It depends. There are basically three levels of multi-threading in MTIMESX:

 1) BLAS Routines.
 2) Multi-threading obtained on the basic C loops because the optimizing compiler you are
 using recognized the parallelism in the calculation and multi-threaded it.
 3) Multi-threading obtained explicitly with the OpenMP #pragma parallel constructs
 applied to the basic C loops.

The BLAS routines used by MTIMESX may or may not be multi-threaded. This will depend on
your particular version of MATLAB, the BLAS library you linked with, and whether or not you are
running MATLAB in a multi-threaded mode. Newer versions of MATLAB are more likely to have
the BLAS routines multi-threaded. Whenever MTIMESX calls a BLAS routine you will get the
benefit of the multi-threading if the BLAS routine is multi-threaded. MTIMESX has no control over
this. You will either get it or not get it depending on the BLAS library and the MATLAB mode. For
example, using the 'OMP_SET_NUM_THREADS' directive (see next section) will have no effect
whatsoever on whether or not the BLAS routines called are multi-threaded.

The C compiler you use to compile MTIMESX may be an optimizing compiler that is able to
recognize existing parallelism in the C loops used by MTIMESX. If that is the case, then the
compiler might produce multi-threaded code for these loops without the code specifically
requesting it. There is no direct control over this at run-time when you call MTIMESX. You either
get it or you don't depending on how the compiler compiled the C loops. The C loops that
MTIMESX uses are very basic (e.g., a loop to multiply an array by a scalar) so a good compiler
will easily be able to recognize the parallelism and multi-thread the code. However, this is not
guaranteed and it needs to be stressed that the speed of the resulting compiled code can vary
greatly depending on your computer and the compiler you use. Generally speaking, the
calculations that are most likely to benefit from this implicit multi-threading in 'LOOPS' or 'SPEED'
mode are scalar multiplies, dot products, outer products, and certain matrix * vector operations
that can be performed with a series of dot products.

MTIMESX also has some explicit multi-threaded code using OpenMP #pragma parallel
constructs. In order to use the OpenMP parallel processing environment, your compiler must
support OpenMP. Note that the LCC compiler supplied with MATLAB does not support OpenMP
compiling. Neither do the Microsoft Visual C/C++ compilers prior to version 8 (2005) or any of the
Standard versions of the Microsoft Visual C/C++ compilers (you need the Professional version to
get OpenMP support). The latest gcc and Intel compilers do support OpenMP. Although
Microsoft Visual C/C++ versions may support OpenMP compiling, the associated mexopts.bat
files supplied with MATLAB for these compilers do not have the /openmp compiler option
selected to enable OpenMP compiling. In this particular case, the mtimesx_build function will
automatically create a copy of the mexopts.bat file and add the /openmp compiling option to get
this capability enabled. The operations that are explicitly multi-threaded using OpenMP #pragma
parallel constructs are (unless otherwise noted, results may not match MATLAB exactly):

 scalar * array (results will match MATLAB exactly)
 vector outer product (results will match MATLAB exactly)
 vector inner product (i.e., dot product)
 vector * matrix (using a series of dot product calculations)
 matrix' * vector (using a series of dot product calculations)
 matrix.' * vector (using a series of dot product calculations)
 (4x4 or smaller matrix) * (4x1 or smaller vector) (large nD case, no singleton expansion)
 (1x4 or smaller vector) * (4x4 or smaller matrix) (large nD case, no singleton expansion)

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 7 of 19

Not all of the operations in the above list are always multi-threaded. The actual decision to use a
series of BLAS calls vs a single C code loop vs an OpenMP multi-threaded C code loop depends
on the variable sizes and on whether or not there are complex variables or conjugates involved in
the computation. You can use the 'DEBUG' directive to see exactly what method is actually used
in calculations, and you can use the 'OMP_GET_NUM_THREADS' directive to see how many
threads were actually used in the most recent MTIMESX calculation. Note that it is possible for a
calculation in 'LOOPS' mode to run faster than a calculation in 'LOOPSOMP' mode if the
optimizing compiler has already multi-threaded the underlying C loops.

Is MTIMESX Itself Thread-Safe?

The short answer is no, MTIMESX is not thread-safe. The there are three main reasons:

1) MTIMESX keeps track of the calculation mode related settings in global variables.
This is necessary so that the user does not have to enter the calculation mode, number
of threads to use, etc. with each and every call. I felt that the convenience of this feature
out-weighed the thread-safety issue, so that is how I programmed it. Specifically, the
global variables are used to remember the following:
 Calculation mode
 Number of threads to request for OpenMP methods
 Debug print flag
 Number of OpenMP threads actually used in the previous calculation

2) MTIMESX makes calls to the BLAS library, which may not be thread-safe.

3) MTIMESX makes MATLAB API calls, which may not be thread-safe.

That being said, you might be able to use MTIMESX in a thread-safe manner in your m-code if
you adhere to the following restrictions:

1) Do not change any calculation mode related settings in any of your threads. That is, do
not use any of the following directives (see next section for details of these directives):

 'BLAS'
 'LOOPS'
 'LOOPSOMP'
 'MATLAB'
 'SPEED'
 'SPEEDOMP'
 'DEBUG'
 'NODEBUG'
 'OMP'
 'OMP_SET_NUM_THREADS'
 'OMP_SET_NUM_THREADS(N)'

2) Ensure you are linking with a thread-safe BLAS library.

3) Ensure that the MATLAB API functions are thread-safe. (this may not be possible)

In addition, since the number of threads actually used in a call will be subject to a race condition
among your threads, the returned value from this directive after your threads complete will be
unreliable since there will be no way to know which thread generated the value:

 'OMP_GET_NUM_THREADS'

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 8 of 19

 4) Syntax

MTIMESX has full support for transpose ('T'), conjugate transpose ('C'), and conjugate ('G') pre-
operations on the input variables. The general syntax to perform the operation op(A) * op(B) is
(arguments in brackets [] are optional and case insensitive):

 mtimesx(A [,transa] ,B [,transb] [,directive] [, directive] ...)

 Where:

 A, B = a single, double, or double sparse scalar, vector, matrix, or nD-array

 And where transa , transb , and directive are the optional inputs:

 transa, transb = A character indicating a pre-operation on A and B:
 The pre-operation can be any of:
 'N' or 'n' = No pre-operation (the default if trans_ is missing)
 'T' or 't' = Transpose
 'C' or 'c' = Conjugate Transpose
 'G' or 'g' = Conjugate (no transpose)

 directive = A character string indicating calculation mode:
 'BLAS'
 'LOOPS'
 'LOOPSOMP'
 'MATLAB'
 'SPEED'
 'SPEEDOMP'

Note: The ‘N’, ‘T’, and ‘C’ have the same meanings as the direct inputs to the BLAS routines. The
‘G’ input has no direct BLAS counterpart, but was relatively easy to implement in MTIMESX and
saves time (as opposed to computing conj(A) or conj(B) explicitly before calling MTIMESX).

Note: If you combine double sparse and single inputs, MTIMESX will convert the single input to
double since MATLAB does not support a single sparse result. If you combine sparse inputs with
full nD (n > 2) inputs, MTIMESX will convert the sparse input to full since MATLAB does not
support a sparse nD result. One exception is a double sparse scalar times a single. In this case
MTIMESX will convert the double sparse scalar to a single and return a full single result.

Whenever you change modes or requested number of threads, the changes affect the current
calculation (if any) and all future calculations until other directives are issued. If you clear
MTIMESX from memory then the next time it runs it will start up in 'MATLAB' mode. You can also
issue the following OpenMP related directives. If MTIMESX is compiled with a non-OpenMP
compliant compiler then these directives are either ignored or produce a fixed result.

 'OMP'
 Same as issuing the directives 'SPEEDOMP' and 'OMP_SET_NUM_THREADS'

 'OMP_SET_NUM_THREADS'
 Sets the maximum number of requested threads for OpenMP to the number of
 processors available.

 'OMP_SET_NUM_THREADS(N)'
 N is any expression evaluated in caller workspace.
 Sets the maximum number of requested threads for OpenMP to N.
 Uses the OpenMP method #pragma omp parallel num_threads(N) to request the
 number of threads to use for OpenMP parallel code. Temporarily creates a
 variable called OMP_SET_NUM_THREADS in the caller workspace which is
 used to evaluate the expression N.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 9 of 19

 'OMP_GET_NUM_PROCS'
 Must be the only argument.
 Returns the number of processors available.
 Returns the value of a OpenMP omp_get_num_procs() call.
 This directive can be used with non-OpenMP compiled code also.

 'OMP_GET_NUM_THREADS'
 Must be the only argument.
 Returns the number of OpenMP threads that were actually used for the most
 recent MTIMESX calculation. That is, the value of the OpenMP function
 omp_get_num_threads() called from within the OpenMP parallel section. If the
 most recent MTIMESX calculation did not use OpenMP then the value returned
 will be 0. This directive can be used with non-OpenMP compiled code also.

 'OMP_GET_MAX_THREADS'
 Must be the only argument.
 Returns the value you set with the OMP_SET_NUM_THREADS directive.
 This directive can be used with non-OpenMP compiled code also.

 'OMP_GET_WTICK'
 Must be the only argument.
 Returns the number of seconds between processor ticks.
 Returns the result of an OpenMP omp_get_wtick() call.

 'OMP_GET_WTIME'
 Must be the only argument.
 Returns value in seconds of time elapsed from some point.
 Returns the result of an OpenMP omp_get_wtime() call.

There are also additional directives available that do not affect calculations:

 'LOGO' (reproduces MTIMESX graphic logo)
 'DEBUG' (gives feedback on exactly which method is used for a calculation)
 'NODEBUG' (turns off 'DEBUG' mode)
 'HELP' (prints the MTIMESX basic help text from the file mtimesx.m)
 'COMPILER' (returns a string with the name of the compiler used)
 'OPENMP' (returns 1 if compiled with OpenMP features enabled, 0 otherwise)

You can also call MTIMESX with just directives to get or set the calculation mode information etc.
without actually doing any calculation. e.g.,

 M = mtimesx([directive] [,directive] ...)

 Where:
 M = The result of the call. When setting a mode, or if no argument is present, MTIMESX simply
 returns the current calculation mode.
 directive = Any of the directives listed previously.

Examples:

 C = mtimesx (A,B) % performs the calculation C = A * B
 C = mtimesx (A,'T',B) % performs the calculation C = A.' * B
 C = mtimesx (A,B,'g') % performs the calculation C = A * conj(B)
 C = mtimesx (A,'c',B,'C') % performs the calculation C = A' * B'
 mtimesx ('SPEED') % sets future calculations to ‘SPEED’ mode
 C = mtimesx (A,'g',B,'c') % performs the calculation C = conj(A) * B'
 C = mtimesx (A,B,'MATLAB') % performs the calculation C = A * B in MATLAB

% mode. All future calculations use MATLAB mode too
 mtimesx (C,A,'T',B,'G') % performs the calculation C = C + A.' * conj(B)

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 10 of 19

 5) Multi-Dimensional Support

MTIMESX supports nD inputs. For these cases, the first two dimensions specify the matrix
multiply involved. The remaining dimensions are duplicated and specify the number of individual
matrix multiplies to perform for the result. i.e., MTIMESX treats these cases as arrays of 2D
matrices and performs the operation on the associated pairings. The 2D slices can be 2D
matrices, 1D vectors, or 1D scalars. For the 1D scalar case the usual scalar multiply is done, not
a matrix multiply. For example,

 If A is (2,3,4,5) and B is (1,1,4,5), then
 mtimesx(A,B) would result in a C(2,3,4,5), where C(:,:,i,j) = A(:,:,i,j) * B(:,:,i,j), i=1:4, j=1:5

 which would be equivalent to the MATLAB m-code:

 C = zeros(2,3,4,5);
 for m=1:4
 for n=1:5
 C(:,:,m,n) = A(:,:,m,n) * B(:,:,m,n);
 end
 end

Another example:

 If A is (2,3,4,5) and B is (3,6,4,5), then
 mtimesx(A,B) would result in C(2,6,4,5), where C(:,:,i,j) = A(:,:,i,j) * B(:,:,i,j), i=1:4, j=1:5

 which would be equivalent to the MATLAB m-code:

 C = zeros(2,6,4,5);
 for m=1:4
 for n=1:5
 C(:,:,m,n) = A(:,:,m,n) * B(:,:,m,n);
 end
 end

The first two dimensions must conform using the standard matrix multiply rules (or be scalar)
taking the transa and transb pre-operations into account, and dimensions 3:end must match
exactly or be singleton (equal to 1). If a dimension is singleton then it is virtually expanded to the
required size (i.e., equivalent to a repmat operation to get it to a conforming size but without the
actual data copy). This is equivalent to a bsxfun capability for matrix multiplication. For example:

 If A is (2,3,4,5) and B is (3,6,1,5), then
 mtimesx(A,B) would result in C(2,6,4,5), where C(:,:,i,j) = A(:,:,i,j) * B(:,:,1,j), i=1:4, j=1:5

 which would be equivalent to the MATLAB m-code:

 C = zeros(2,6,4,5);
 for m=1:4
 for n=1:5
 C(:,:,m,n) = A(:,:,m,n) * B(:,:,1,n);
 end
 end

When a transpose (or conjugate transpose) is involved, the first two dimensions are transposed in
the multiply as you would expect. For example:

 If A is (3,2,4,5) and B is (3,6,4,5), then
 mtimesx(A,'C',B,'G') gives C(2,6,4,5), where C(:,:,i,j) = A(:,:,i,j)' * conj(B(:,:,i,j)), i=1:4, j=1:5

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 11 of 19

 which would be equivalent to the MATLAB m-code:

 C = zeros(2,6,4,5);
 for m=1:4
 for n=1:5
 C(:,:,m,n) = A(:,:,m,n)' * conj(B(:,:, m,n));
 end
 end

 If A is a scalar (1,1) and B is (3,6,4,5), then
 mtimesx(A,'G',B,'C') would result in C(6,3,4,5), where C(:,:,i,j) = conj(A) * B(:,:,i,j)', i=1:4, j=1:5

 which would be equivalent to the MATLAB m-code:

 C = zeros(6,3,4,5);
 for m=1:4
 for n=1:5
 C(:,:,m,n) = conj(A) * B(:,:,m,n)';
 end
 end

 If A is (3,3) and B is (3,1,1000000), then
 mtimesx(A,'T',B) would result in C(3,1,1000000), where C(:,:,i) = A.' * B(:,:,i), i=1:1000000

 which would be equivalent to the MATLAB m-code:

 C = zeros(3,1,1000000);
 for m=1:1000000
 C(:,:,m) = A.' * B(:,:,m);
 end

 For this particular case, note that MTIMESX provides inline C loops code for this calculation
 since the first two dimensions of A and B are no greater than 4. So a fast way to perform this
 calculation would be:

 mtimesx('LOOPS');
 C = mtimesx(A,'T',B);

 And, since this matches one of the multi-threaded forms, this calculation can be speeded up
 even further with use of the OpenMP methods:

 mtimesx('SPEEDOMP','OMP_SET_NUM_THREADS(4)');
 C = mtimesx(A,'T',B);

 Finally, if you want MTIMESX to pick the number of threads to be the maximum number of
 processors available automatically instead of hardcoding this in your code, you can do the
 following:

 mtimesx('OMP');
 C = mtimesx(A,'T',B);

 For the last form listed above, recall that the 'OMP' directive is the same thing as issuing the
 'SPEEDOMP' directive and the 'OMP_SET_NUM_THREADS' directive simultaneously, and if
 you don't give the number of threads to use (as we didn't in this example) MTIMESX will pick
 the number of threads to use automatically as the number of processors available. Caution:
 Some processors have twice as many logical processors as physical processors (e.g., the
 latest Intel i3, i5, i7 chips and the latest AMD chips). On these machines it is best to set the
 number of threads to the actual physical number of processors, not the logical number.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 12 of 19

 6) Other Types

Types other than single or double will not generate errors directly from MTIMESX. Instead, they
are simply passed on through to the MATLAB intrinsic mtimes function. If MATLAB supports the
operation then that result will be returned, otherwise a MATLAB generated error will result. Note
particularly that MATLAB does not support any multi-dimensional capability or bsxfun-like
singleton expansion capability for matrix multiplication, so if you attempt this with types other than
single or double MATLAB will generate an error.

 7) Philosophy

The primary motivation for MTIMESX is an improvement on the MATLAB intrinsic function
mtimes for speed whenever possible and to directly support multi-dimensional matrix
multiplication without creating 2D array slice copies. The amount of improvement you will get with
MTIMESX is highly dependent on your particular computer, C compiler, MATLAB version, and
what calculation mode MTIMESX is using. Older versions of MATLAB often see the most
improvement for 'SPEED' mode, while later versions of MATLAB may see little to no benefit in the
same cases. Later versions of MATLAB seem to benefit the most from OpenMP calculations,
while earlier versions of MATLAB actually seem to impede or interfere with OpenMP calculations.
MTIMESX directly supports multi-dimensional operations, treating nD arrays as arrays of 2D
arrays. See the following test run m-files for comprehensive results on your particular setup
(CAUTION: These tests can take several hours to run … best to do it overnight:

mtimesx_test_ddequal.m % A test program for (double) * (double) equality
mtimesx_test_ddspeed.m % A test program for (double) * (double) speed
mtimesx_test_ssequal.m % A test program for (single) * (single) equality
mtimesx_test_ssspeed.m % A test program for (single) * (single) speed
mtimesx_test_dsequal.m % A test program for (double) * (single) equality
mtimesx_test_dsspeed.m % A test program for (double) * (single) speed
mtimesx_test_sdequal.m % A test program for (single) * (double) equality
mtimesx_test_sdspeed.m % A test program for (single) * (double) speed
mtimesx_test_nd.m % A test program for multi-dimensional matrix multiplies

MTIMESX is also an example of calling BLAS routines from a C-mex routine (non C programmers
need not worry: the routine is self-building ... you don't have to know anything about C or mex to
use MTIMESX... just skip this section). The source code is generously commented so that you
can (hopefully) follow why a certain routine was used, or why custom code was used instead of a
BLAS routine. Creating a matrix and scalar multiply routine for the BLAS examples gives the
opportunity to provide an example that has a practical use and at the same time allows direct
comparison with MATLAB results.

MTIMESX is not an attempt to necessarily reproduce the exact BLAS calling sequences that
MATLAB uses. For some of the general matrix-matrix and matrix-vector operations, I would not
be surprised to find that MTIMESX was using the exact same BLAS calling sequences, but this is
not the goal and is not the claim. Indeed, this would have been a conflict with the speed goal in
many cases. Keep this important point in mind ... MTIMESX will not in general reproduce
MATLAB results exactly in any mode other than 'MATLAB' mode because that is not the main
goal of those modes. But these other modes will produce results that are just as accurate as the
MATLAB result ... and in some special cases will run many times faster than the MATLAB
instinsic function mtimes. For certain 2D operations involving complex conjugates MTIMESX
can run 3x - 4x faster. For certain nD operations MTIMESX can run 50x - 100x faster than the
equivalent MATLAB loop (yes, you read that correctly, fifty to one hundred times faster).

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 13 of 19

 8) BLAS Routines Used

The BLAS routines used are DAXPY, DDOT, DGER, DGEMV, DGEMM, DSYRK, and DSYR2K
for double variables, and SAXPY, SDOT, SGER, SGEMV, SGEMM, SSYRK, and SSYR2K for
single variables. These routines are (description taken from www.netlib.org):

DAXPY and SAXPY:

* Computes constant times a vector plus a vector.

DDOT and SDOT:

* Forms the dot product of two vectors.

DGER and SGER: Performs the rank 1 operation

* A := alpha*x*y' + A,
*
* where alpha is a scalar, x is m element vector, y is n element vector and A is m by n matrix.

DGEMV and SGEMV: Performs one of the matrix-vector operations

* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

DGEMM and SGEMM: Performs one of the matrix-matrix operations

* C := alpha*op(A)*op(B) + beta*C,
*
* where op(X) is one of
*
* op(X) = X or op(X) = X',
*
* alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix,
* op(B) a k by n matrix and C an m by n matrix.

DSYRK and SSYRK: Performs one of the symmetric rank k operations

* C := alpha*A*A' + beta*C,
*
* or
*
* C := alpha*A'*A + beta*C,
*
* where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k
* matrix in the first case and a k by n matrix in the second case.

DSYR2K and SSYR2K: Performs one of the symmetric rank 2k operations

* C := alpha*A*B' + alpha*B*A' + beta*C,
*
* or
*
* C := alpha*A'*B + alpha*B'*A + beta*C,
*
* where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k
* matrices in the first case and k by n matrices in the second case.

http://www.netlib.org/lapack/lapack-3.1.1/html/dger.f.html#DGER.1

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 14 of 19

 9) Supported Operations

Custom code is used to minimize memory access times and take full advantage of symmetric
cases in 'SPEED' and 'SPEEDOMP' modes, resulting in substantial time savings in some cases,
particularly for complex operations on older versions of MATLAB. Hence you will find extensive
custom code for these cases, particularly the scalar multiplies and contiguous dot products.

MTIMESX supports the following operations (arguments in either order):

 1D vector * scalar
 2D matrix * scalar
 nD array * scalar
 vector * vector (inner or outer product)
 matrix * vector
 matrix * matrix
 nD matrix * nD matrix (treated as arrays of 2D matrices with singleton expansion)

Nearly all operations support nD arrays with the understanding that only the first two dimensions
are used in any transpose operations. The main restriction on nD arrays comes from MATLAB
itself ... you can't combine sparse and nD (n > 2) variables and get a sparse result because
MATLAB does not support a sparse nD result (MTIMESX will return a full result).

 10) Speed Improvements

It bears repeating that the MTIMESX timing results are highly dependent on your particular
computer, C compiler, and version of MATLAB. MTIMESX uses custom code in many places
instead of BLAS calls in an effort to minimize memory access times. The effectiveness of this
custom code can vary quite a bit when compared directly to the intrinsic MATLAB mtimes,
particularly with respect to the MATLAB version involved and the number or cores used by the
BLAS routines. Nevertheless, here are some sample timings with huge variables (e.g., 100MB)
using R2008a with the lcc compiler on 32-bit Intel Core 2 Duo WinXP machine:

 SPEED MODE
 (% faster mtimesx over mtimes) Real*Real Real*C plx Cplx*Real Cplx*Cplx
 conj(Scalar) * Vector.' -3% 60% -2% 60%
 conj(Vector) * Scalar.' -4% -3% 58% 51%
 conj(Array) * Scalar.' 76% 36% 83% 70%
 conj(Vector) i Vector.' -4% 7% 172% 169%
 conj(Vector) o Vector.' -8% 6% 6% 26%
 conj(Vector) * Matrix.' -0% 0% 0% -0%
 conj(Matrix) * Vector.' -0% -0% 360% 142%
 conj(Matrix) * Matrix.' -0% 0% 3% 2%

Many of the operations offer no speed improvement, but some of them offer a substantial
improvement. For example, the table above shows that MTIMESX is 360% faster than MATLAB
mtimes for the computation conj(complex matrix) * (real vector).’ in ‘SPEED’ mode. A quick
examination of the table reveals that this is not an isolated incident. There are several
calculations in the sample table above where MTIMESX is 10’s and 100’s percent faster than
MATLAB mtimes. Similar speed improvements are obtained with other calculations not shown.

Double sparse matrix operations are supported, but not always directly. For matrix * scalar
operations, custom code is used to produce a result that minimizes memory access times. All
other operations, such as matrix * vector or matrix * matrix, or any operation involving a transpose
or conjugate transpose, are obtained with calls back to the MATLAB intrinsic mtimes function.
Thus for most non-scalar sparse operations, MTIMESX is simply a thin wrapper around the
intrinsic MATLAB function mtimes and you will see no speed improvement.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 15 of 19

How does MTIMESX get speed improvements over the MATLAB intrinsic mtimes function?

By reducing memory access times and taking full advantage of conjugate and symmetric cases.
The MATLAB intrinsic mtimes function is excellent, but it doesn’t optimize memory access for all
operation combinations and sometimes uses memory inefficient algorithms to calculate the result.
This is particularly true for older versions of MATLAB. For many cases, what I have done is to call
a different set of BLAS routines or create custom code. The MATLAB sequence of calling the
BLAS routines for some of these operations, particularly for complex operations, involves
accessing the input variables twice. Custom code can sometimes avoid this and access the input
variables only once, reducing the total memory access time to perform the operation. Some
examples:

Example 1: Large complex matrix conjugate transposed times a “thin” complex matrix.

>> A=rand(3000)+rand(3000)*1i;
>> B=rand(3000,3)+rand(3000,3)*1i;
>> tic;A' * B;toc
Elapsed time is 0.440585 seconds.
>> tic;mtimesx(A,'c',B,'SPEED');toc
Elapsed time is 0.217146 seconds.
>> isequal(A’*B,mtimesx(A,’c’,B,'SPEED'))
ans =
 0

So how did MTIMESX beat mtimes for this operation? Since the first matrix A is transposed, the
actual memory access for this matrix can be done by physical columns, not rows, and the
physical column elements are contiguous in memory. Custom code was written to take advantage
of this fact, and performs the operation as a series of complex dot product type operations on the
columns of A and B. The custom code does the real and imaginary part of the dot product result
all within the same loop, so the input array contents are accessed only once. The MATLAB
intrinsic mtimes apparently uses a series of BLAS calls, forcing the input array memory to be
accessed twice. This probably accounts for the 2x speed improvement. Because the underlying
calculations are done slightly differently, the answers are slightly different. But the MTIMESX
result is just as accurate as the MATLAB intrinsic mtimes result. MTIMESX uses a custom C
implementation of a basic dot product algorithm using loop unrolling to gain a speed and
accuracy improvement. A loop block size of 10 for the unrolling was optimum in testing, so that is
what is used in the custom code. Custom dot product code, rather than calling the BLAS routines
DDOT or SDOT directly, is necessary to avoid accessing the input variables twice.

Example 2: Large complex vector outer product.

>> A = rand(3000,1)+rand(3000,1)*1i;
>> B = rand(1,3000)+rand(1,3000)*1i;
>> tic;A*B;toc
Elapsed time is 0.467077 seconds.
>> tic;mtimesx(A,B,'SPEED');toc
Elapsed time is 0.249749 seconds.
>> isequal(A*B,mtimesx(A,B)) % 'SPEED' option not needed since it carries over from the
previous call
ans =
 1

Again, the speed improvement is the result of custom code in MTIMESX that avoids accessing
the input variables twice. Here the results are exactly the same.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 16 of 19

Example 3: Large complex sparse matrix times a complex scalar on older version of MATLAB.

>> A = sprand(10000,10000,.1);
>> A = A + A*1i;
>> B = rand + rand*1i;
>> mtimesx('SPEED'); % This setting will carry forward to all subsequent calls
>> tic;conj(a)*b;toc
Elapsed time is 7.740495 seconds.
>> tic;mtimesx(a,'G',b);toc
Elapsed time is 0.520425 seconds.
>> isequal(conj(A)*B,mtimesx(A,'G',B))
ans = 1

The dramatic speed improvement here is because MTIMESX treats the operation as a scalar
times a 1D array. No special sparse matrix multiply code is needed. Apparently the MATLAB
intrinsic mtimes function calls special sparse matrix multiply algorithms for this. Here the results
are exactly the same. I will quickly point out that this example is for an older version of MATLAB.
The latest versions of MATLAB have improved this calculation but even in this case MTIMESX is
nearly 400% faster (as compared to nearly 1500% faster in the above example).

 11) List of Included Files

mtimesx.m 1.40, 4 October 2010 % Used for the help text and first-time building
mtimesx_build.m 1.40, 4 October 2010 % Building mtimesx.mexext for PC Windows
mtimesx_sparse.m 1.00, 27 September 2009 % Used for calling back to MATLAB for multiplies
mtimesx_test_ddequal.m 1.00, 27 September 2009 % A test program for (double) * (double) equality
mtimesx_test_ddspeed.m 1.00, 27 September 2009 % A test program for (double) * (double) speed
mtimesx_test_ssequal.m 1.00, 27 September 2009 % A test program for (single) * (single) equality
mtimesx_test_ssspeed.m 1.00, 27 September 2009 % A test program for (single) * (single) speed
mtimesx_test_dsequal.m 1.00, 27 September 2009 % A test program for (double) * (single) equality
mtimesx_test_dsspeed.m 1.00, 27 September 2009 % A test program for (double) * (single) speed
mtimesx_test_sdequal.m 1.00, 27 September 2009 % A test program for (single) * (double) equality
mtimesx_test_sdspeed.m 1.00, 27 September 2009 % A test program for (single) * (double) speed
mtimesx_test_nd.m 1.40, 4 October 2010 % A test program for multi-dimensional multiplies
mtimesx.c 1.40, 4 October 2010 % C source code for mexFunction interface
mtimesx_RealTimesReal.c 1.41, 23 February 2011 % C source code for matrix multiplication logic
mtimesx_20110223.pdf 1.41, 23 February 2011 % The file you are currently reading

For PC Windows, MTIMESX attempts to be self-building. When you first run MTIMESX, the file
that will execute will be mtimesx.m. If this file executes, then that means that the mex dll routine
has not been built yet. So the only code in mtimesx.m is a call to mtimesx_build.m to build the
mex dll routine and then call it. mtimesx_build will try to autodetect if the machine is PC Windows.
If it is, it will try to self-build the mex dll routine. If not, it will exit with brief instructions on how to
manually compile the mex dll routine. There is also some anecdotal advice for building
MTIMESX on non-Windows systems in the next section.

Once the dll building is complete, you will also have an additional file: mtimesx.mexext

From now on, whenever you invoke MTIMESX it is this file that actually executes. The mexext is
replaced with the actual mex dll extension for your particular computer and operating system. For
example, on 32-bit windows the extension is mexw32 for later versions of MATLAB.

Sparse matrix multiply operations and transpose operations are not directly supported in the C
code. Instead, a call-back to MATLAB is done to perform these using the mtimesx_sparse.m
function. So you will not see any difference between MTIMESX and the MATLAB mtimes
function for these cases. Where you *will* see a difference is in the op(scalar) * op(sparse) cases,
where custom code is used to minimize memory access in MTIMESX. These cases can yield a
significant speed improvement over the MATLAB mtimes function for older versions of MATLAB
or newer versions of MATLAB if at least one of the variables is complex.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 17 of 19

 12) Testing

The only configurations tested by the author for MTIMESX are PC 32-bit Windows XP with
various MATLAB versions R2006b - R2010a and the lcc compiler and Microsoft Visual C/C++ 8
(2005) and Microsoft Visual C/C++ 9 (2008) compilers. The author would like to solicit help from
the community in getting MTIMESX (and the self-building code in mtimesx_build.m) to work under
other configurations.

Other configurations tested by the MATLAB community:

User: Fabio Veronese
System: Gentoo Linux (64bit) 2.6.33 on amd64 system
Compiler: gcc 4.3.* (not the deprecated 4.2 as suggested by Mathworks)
Compile Command(s):

mex('-DDEFINEUNIX','-largeArrayDims', '-lmwblas','mtimesx.c')

User: Joshua Dillon
System: Ubuntu / linux
Compiler: (unknown)
Compile Command(s):

libblas='/usr/lib/libblas.so';
if exist(libblas,'file')~=2
 system('sudo aptitude install libblas-dev');
end
mex('CFLAGS=-std=c99-fPIC','-DDEFINEUNIX','-largeArrayDims','-lmwblas','mtimesx.c');

User: Jon
System: Debian, 64-bit
Compiler: (unknown)
Compile Command(s):

mex CFLAGS="\$CFLAGS -std=c99" -DDEFINEUNIX -largeArrayDims -lmwblas mtimesx.c

User: Val Schmidt
System: Snow Leopard 10.6, 64-bit
Compiler: gcc
Compile Command(s):

To do so I edited
/Applications/MATLAB_R2009b.app/bin/gccopts.sh
In the section for "maci64" I changed "SDKROOT" and
"MACOSX_DEPLOYMENT_TARGET" to reflect a change in OS from 10.5 to 10.6.
Then I selected this opts file with
mex -setup
selecting "1" at the prompt.
Then I compiled everything with:
mex -v -DDEFINEUNIX -largeArrayDims mtimesx.c -lmwblas -lmwlapack

Side Note: I have changed to the old C source code commenting style using /* ... */ to avoid
compiler default comment style incompatibilities.

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 18 of 19

 13) Upgrades

Future upgrades planned:

• Bug fixes, of course.
• More extensive use of OpenMP code (in work, possibly next release)
• More extensive test routines.
• Expanded documentation and examples.
• Support for 64-bit and linux and mac machines, particularly for self building. But this will

depend on other users willing to supply this code to me, since I do not have access to
these machines for development or testing. (in work, possibly next release)

• Support for in-place operations, particularly with direct access to BLAS routine
capabilities (in work, possibly next release)

• Direct access to the BLAS sub-matrix capability and scalar multipliers.
• Cell arrays used for block matrix multiples

Future upgrades that I *may* consider depending on my time availability and the popularity of
MTIMESX:

• More speed improvements to the current code if I can come up with better algorithms.
Does anybody out there have a fast matrix transpose algorithm? Please contact me if you
do.

• Custom code for (single * double) and (double * single) multiplies. As currently written,
MTIMESX simply does a conversion of the input argument(s) first and then does the
multiply. This can run quite a bit slower than the MATLAB intrinsic mtimes function.

• Custom code for sparse transpose and conjugate transpose operations. The goal here
again would be to see if a speed improvement can be achieved. Implementation will
depend on my ability to find an efficient sparse matrix transpose algorithm.

• Custom code for sparse matrix times sparse vector operations. The goal would be to see
if a speed improvement can be achieved. Implementation will depend on my ability to find
some spare time to design the algorithm.

• Support for older versions of MATLAB, particularly versions prior to 7. My guess is that
some of the MATLAB code and/or API functions I used might not be compatible. Again,
this will depend on other users willing to help modify the code, since I do not have access
to these older versions of MATLAB for development or testing.

 14) MTIMESX Logo

The MTIMESX logo was inspired by a 3D graphing example in the MATLAB documentation and
can be generated with the following command:

mtimesx('logo')

 15) Contact the Author

Feel free to post items of general interest to other users (bug reports, performance data,
questions about usage or optimizations, etc) directly on the FEX of course. But if you have
modified the code for your version of MATLAB (older version, non-PC machine, non-supported C
compiler, etc.) please feel free to contact me directly and I will try to incorporate them into future
MTIMESX upgrades. You can reach me at

 a#lassyguy%ho$mail_com (replace # with k, % with @, $ with t, _ with .)

James Tursa

MTIMESX Fast Matrix Multiply for MATLAB, v 1.41, 23 February 2011 by James Tursa

Page 19 of 19

 16) Acknowledgements

The omp_get_num_procs() function for non-OpenMP implementations is courtesy of Dirk-Jan
Kroon and is based on his FEX submission maxNumCompThreads.

 17) Release Notes

2009/Sep/27 --> 1.00
 Initial Release.

2009/Dec/10 --> 1.11
 Fixed bug for empty transa & transb inputs.

2010/Feb/23 --> 1.20
 Fixed bug for dgemv and sgemv calls.

2010/Aug/02 --> 1.30
 Added (nD scalar) * (nD array) capability.
 Replaced buggy mxRealloc with custom routine.

2010/Oct/04 --> 1.40
 Added OpenMP support for custom code.
 Expanded sparse * single and sparse * nD support.
 Fixed (nD complex scalar)C * (nD array) bug.

2011/Feb/23 --> 1.41
 Fixed typos in dsyrk, dsyr2k, ssyrk, and ssyr2k BLAS function prototypes.

	DGER.13

