

Simulation error in maximum likelihood estimation of discrete choice models

Mikołaj Czajkowski, **Wiktor Budziński** czaj.org

Simulation error

- Mixed (random parameters) logit models estimated using the simulated maximum likelihood method
 - Necessarily associated with simulation error
- -A different set of draws = somewhat different estimation results
- -What type of draws performs best?
- -How many draws are "enough"?

Mixed logit model

Utility function with preference heterogeneity

$$U_{ijt} = \mathbf{X}_{ijt} \beta_i + \varepsilon_{ijt}$$

Conditional probability of the choice given by the logit formula:

$$P(y_{ijt} | \beta_i) = \frac{\exp(\mathbf{X}_{ijt}\beta_i)}{\sum_{l} \exp(\mathbf{X}_{ilt}\beta_i)}$$

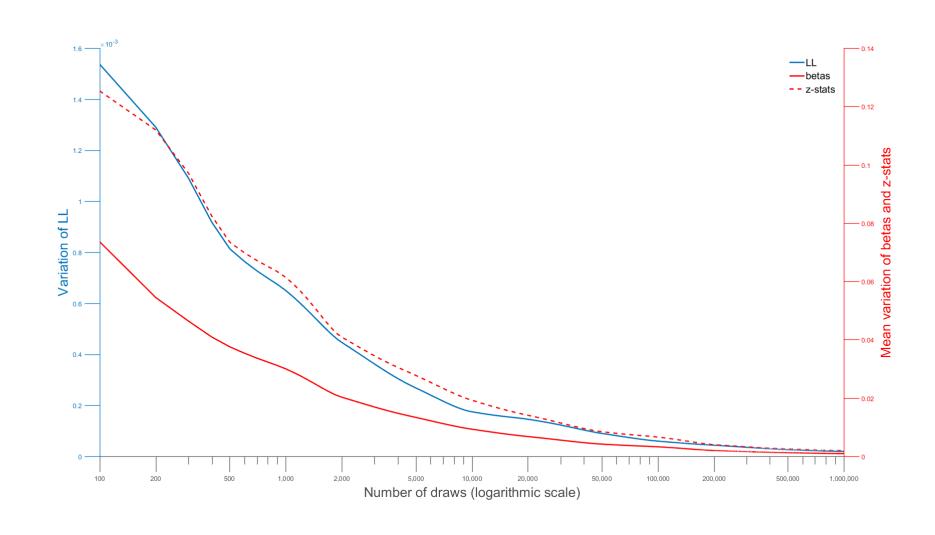
• Unconditional probability given by the integral:

$$P(\mathbf{y}_{i}) = \int \prod \left(P(y_{ijt} | \beta_{i})^{y_{ijt}} \right) f(\beta_{i} | \Omega) d\beta_{i}$$

Which can be approximated by

$$P(\mathbf{y}_i) \approx \frac{1}{R} \sum_{r=1}^{R} \prod \left(P(y_{ijt} \mid \beta_i^r)^{y_{ijt}} \right)$$

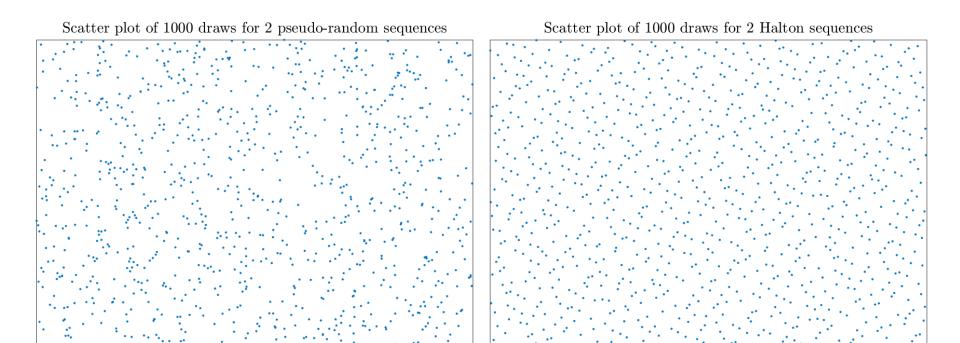
Simulation error vs. the number of draws



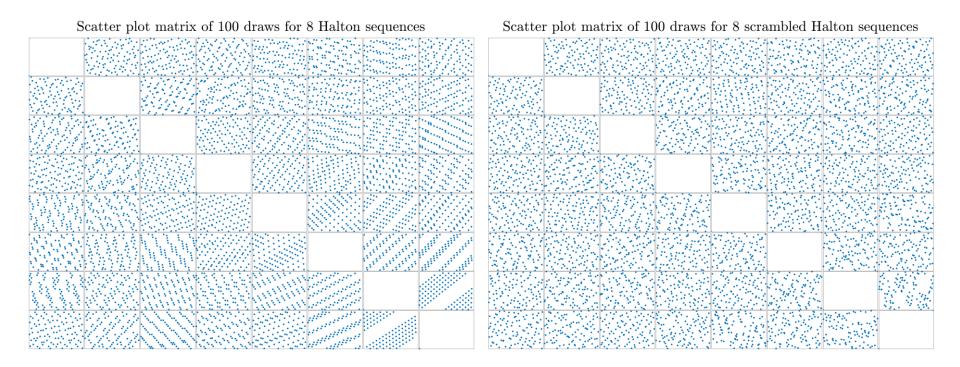
Quasi Monte Carlo methods

- -Quasi Monte Carlo methods reduce simulation-driven variation
 - Halton sequence (Train 2000, Bhat 2001),
 - Sobol sequence (Garrido 2003)
 - Randomized (t,m,s)-nets (Sándor and Train 2004)
 - Modified Latin Hypercube (Hess, Train and Polak 2006)
 - Lattice rules (Munger et al. 2012)
 - Generalized antithetic draws with double base shuffling (Sidharthan and Srinivasan 2010)
 - Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess and Polak 2003, Wang and Kockelman 2008)

Pseudo-random vs. Halton sequence



Halton vs. scrambled Halton sequence



Gaps in existing evidence

- What is the extent of the simulation bias resulting from using different numbers of different types of draws in various conditions (datasets)?
 - Shortcoming of the existing studies:
 - Low numbers of QMC draws (≤ 200)
 - Low number of repetitions for each type and number of draws (≤ 10)
 - Results likely to depend on the number of observations (individuals, choice tasks per individual)
 - Examples of 100 Halton draws leading to smaller bias than 1,000 pseudorandom draws (e.g., Bhat, 2001) have led some to actually use very few draws for simulations
- Our study aims at filling these gaps

Design of our simulation study – Choice task setting and explanatory variables

Explanatory variables	Assumed	Possible values of the explanatory variables					
(choice attributes)	parameter distribution	Alternative 1 (status quo / opt-out)	Alternative 2	Alternative 3			
X_1 (alternative specific constant)	N(-1.0, 0.5)	$X_1 = 1$	$X_1 = 0$	$X_1 = 0$			
X_2 (dummy)	N(1.0, 0.5)	$X_2 = 0$	$X_2 \in \{0,1\}$	$X_2 \in \big\{0,1\big\}$			
X_3 (dummy)	N(1.0, 0.5)	$X_3 = 0$	$X_3 \in \{0,1\}$	$X_3 \in \{0,1\}$			
X_4 (dummy)	N(1.0, 0.5)	$X_4 = 0$	$X_4 \in \left\{0,1\right\}$	$X_4 \in \left\{0,1\right\}$			
X_5 (discrete)	N(-1.0, 0.5)	$X_5 = 0$	$X_5 \in \{1, 2, 3, 4\}$	$X_5 \in \{1, 2, 3, 4\}$			

Design of our simulation study – Choice task setting and explanatory variables

	Dra	WS	Datasets				
Repetitions	Types of draws	Number of draws	Number of choice tasks per individual	Number of individuals	Experimental designs		
1,000	pseudo-random MLHS Halton Sobol	100 200 500 1,000 2,000 5,000 10,000 20,000* 100,000* 200,000* 1,000,000*	4 8 12	400 800 1,200	OOD-design MNL-design MXL-design		

*Selected settings only.

Methodology of comparisons

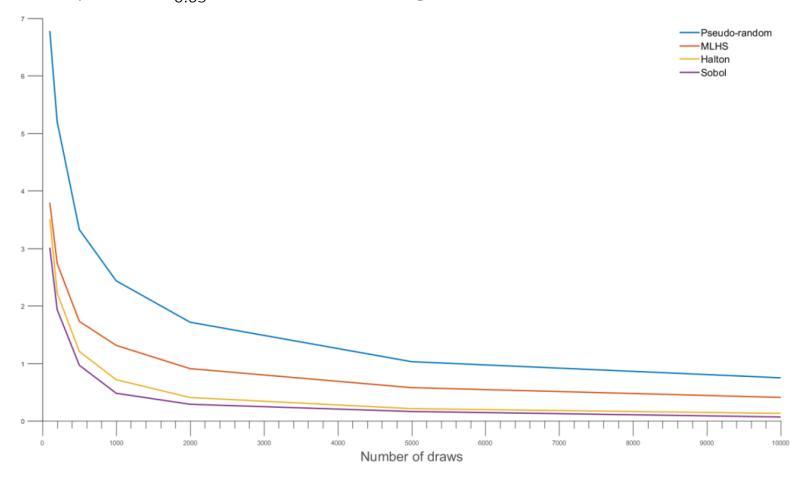
- We need a measure that takes expected values into account but also penalizes variance
 - For typical equality tests the larger the variance, the more difficult to reject the equality hypothesis
- Testing equivalence instead of equality
 - Reverse the null and the alternative hypotheses
 - Test if the absolute difference is higher than a priori defined 'acceptable' level
- Minimum Tolerance Level (MTL)
 - What is the minimum 'acceptable' difference that allows to conclude that two distributions are equivalent at the required significance level
 - How many draws of type A are required, so that with 95% probability the difference in LL / estimates / s.e. / z-stats is not going to be statistically different than:
 - The critical value of the LR-test
 - If the model was estimated using *n* draws of type B

Example – using MTL for the values of the LL function

- Re-estimating the model using a different set of draws is likely to result in a somewhat different value of the LL function
- If LL is used for inference (e.g., LR-test), it is possible to conclude that one specification is superior to another only because one was more 'lucky' with the draws
- By using the MTL approach we are able to evaluate the probability of such an outcome
 - Assume α = 0.05, the interpretation of $MTL_{0.05}$ is that with 95% probability using a different set of draws would not cause the difference in LL values to be higher than $MTL_{0.05}$
 - We can provide recommendations for the minimum number of draws that would result in $MTL_{0.05}$ lower than the specified level

Results – relative performance of types of draws

– Example: $MTL_{0.05}$ of LL for MXL-design, 400 x 4:



Percentage of times each type of draws resulted in the lowest simulation error $(MTL_{0.05})$ for the <u>log-likelihood function value</u>

Number of draws used	Pseudo-random	MLHS	Halton	Sobol
100	0.00%	0.00%	18.52%	81.48%
200	0.00%	0.00%	29.63%	70.37%
500	0.00%	0.00%	22.22%	77.78%
1,000	0.00%	0.00%	25.93%	74.07%
2,000	0.00%	0.00%	0.00%	100.00%
5,000	0.00%	0.00%	14.81%	85.19%
10,000	0.00%	0.00%	0.00%	100.00%

Percentage of times each type of draws resulted in the lowest simulation error ($MTL_{0.05}$) for <u>parameter estimates</u>

Number of draws used	Pseudo-random	MLHS	Halton	Sobol
100	0.00%	0.37%	42.96%	56.67%
200	0.00%	0.00%	33.33%	66.67%
500	0.00%	0.00%	31.11%	68.89%
1,000	0.00%	0.00%	31.48%	68.52%
2,000	0.00%	0.00%	15.93%	84.07%
5,000	0.00%	0.00%	20.74%	79.26%
10,000	0.00%	0.00%	9.26%	90.74%

Results – regression results Dependent variable: log(*MTL*)

	Log-likelihood	Parameter estimates	z-statistics
C	2.8382***	-0.9566***	0.7334***
Constant	(0.0817)	(0.0425)	(0.0362)
loo(arrahou of duarra)	-0.6338***	-0.5786***	-0.5638***
log(number of draws)	(0.0075)	(0.0038)	(0.0032)
Pseudo-random draws	1.4568***	0.8770***	0.8360***
(Sobol used as a reference)	(0.0365)	(0.0186)	(0.0158)
MLHS draws	0.9021***	0.6495***	0.6144***
(Sobol used as a reference)	(0.0382)	(0.0194)	(0.0166)
Halton draws	0.3216***	0.2173***	0.2209***
(Sobol used as a reference)	(0.0382)	(0.0194)	(0.0166)
Number of choice tasks	0.1153***	-0.0450***	0.0230***
Number of choice tasks	(0.0041)	(0.0021)	(0.0018)
Number of individuals	0.8695***	-0.6377***	0.2956***
(in thousands)	(0.0409)	(0.0208)	(0.0177)
OOD-design	-0.1267***	0.3125***	0.2449***
(MXL-design used as a reference)	(0.0329)	(0.0168)	(0.0143)
MNL-design	-0.1495***	0.3224***	0.3558***
(MXL-design used as a reference)	(0.0329)	(0.0168)	(0.0143)
Standard deviations		1.4735***	1.4228***
(Means used as a reference)		(0.0136)	(0.0116)
X_1 (alternative specific constant)		0.3610***	0.1193***
A ₁ (alternative specific constant)		(0.0176)	(0.0150)
Y (discrete variable)		-0.7795***	0.0373**
X_5 (discrete variable)		(0.0176)	(0.0150)
\mathbb{R}^2	0.9299	0.8465	0.869
n (observations)	816	8160	8160

Results – Sobol draws consistently perform best

 Percent of additional draws needed to achieve the same simulation error as Sobol draws:

	Pseudo-random	MLHS	Halton
LL	889%	305%	66%
	[776% - 1,020%]	[258% - 360%]	[47% - 87%]
Parameter estimates	361%	209%	48%
	[331% - 392%]	[189% - 232%]	[38% - 58%]
z-stats	347%	200%	51%
	[321% - 375%]	[182% - 219%]	[42% - 60%]

^{*} Based on regression analysis

Simulation error – Results: how many draws are 'enough'?

- -Using more draws is always better to using fewer draws
- -How many are 'enough' depends on the desired precision level
- -Log-likelihood:
 - Imagine you are comparing 2 specifications using LR-test (d.f. = 1)
 - Simulation error low enough to have 95/99% probability of not erroneously concluding that one model is better than the other
 - In other words, 95/99% of the times the (simulation driven) difference in LL must be lower than 1.9207

	400 x 4	800 x 4	1,200 x 4	400 x 8	800 x 8	1,200 x 8	400 x 12	800 x 12	1,200 x 12
$\alpha = 0.05$	173	277	444	375	602	965	814	1,306	2,095
$\alpha = 0.01$	238	384	617	517	831	1,337	1,119	1,800	2896

Simulation error – Results: how many draws are 'enough'?

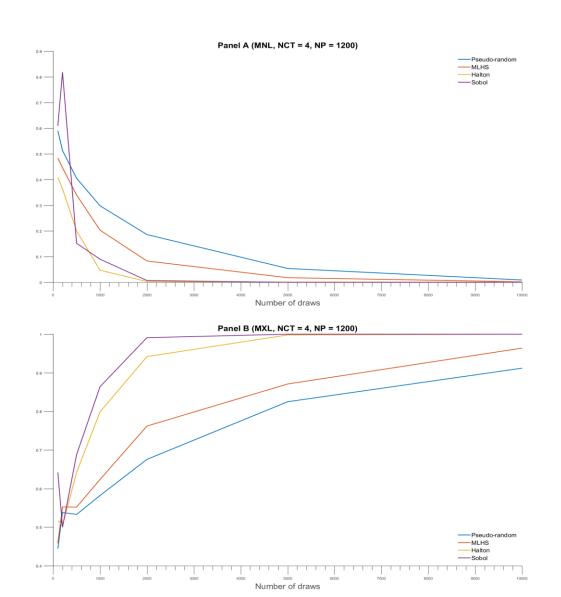
- Parameter estimates:

- No absolute difference level
- The numbers of draws required for 95% probability that the difference between parameter estimates :

	400 x 4	800 x 4	1,200 x 4	400 x 8	800 x 8	1,200 x 8	400 x 12	800 x 12	1,200 x 12
< 5%	1 220	005	CEO	1 1 5 5	0.40	612	1 005	700	
$\alpha = 0.05$	1,230	895	652	1,155	840	612	1,085	790	575
< 5%	1 000	1 212	05.6	1.606	1 220	00.4	1 570	1 1 10	027
$(\alpha = 0.01)$	1,802	1,312	956	1,686	1,228	894	1,578	1,149	837
< 1%	11 221	0.241	Г 000	10.627	7.740	F 627	0.004	7.075	F 206
$(\alpha = 0.05)$	11,321	8,241	5,999	10,637	7,743	5,637	9,994	7,275	5,296
< 1%	16 560	12.066	0.707	15 506	11 202	0.224	14511	10.560	7.606
$(\alpha = 0.01)$	16,569	12,066	8,/8/	15,506	11,292	8,224	14,511	10,568	7,696

- More draws required for standard deviations, ASC, dummies, fewer required for means, cost
- Similar results for comparisons with models estimated using 1,000,000 draws

Using too few draws and identification problems – percentage of times z-statistics exceeded 1.96



"It must take ages to estimate models with so many draws!"

- Estimation time (1 iteration = LL function evaluation + gradient)
 - Data set: 400 respondents x 4 choice tasks
 - Intel E5-2687W @ 3.00 GHz (12-core) CPU (no GPU used!)
 - Efficient code implementation (Matlab, https://github.com/czaj/dce)

Number of draws	1,000	10,000	100,000	1,000,000
Iteration time	0.2 s	1 s	10 s	100 s

Summary and conclusions

- We investigate the performance of the 4 most commonly used types of draws for simulating log-likelihood in the mixed logit model setting
- We find Sobol draws consistently result in the lowest simulation error

Sobol draws recommended

 Conditional on our simulation setting, we find one needs more draws than typically used for 'reliable' estimation results

At least 1,000 draws (at 5%)

- mean of the minimums; samples with fewer observations require fewer draws for precise LL and more draws for precise betas, and vice versa
- Evidence of erroneous inference on significance (both ways), if too few draws are used