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For sure, current models are now better equipped to identify and
address unobserved sources of preference heterogeneity.

However, aside from a few examples, the inherently spatial patterns
of preferences have been rarely clarified or addressed in studies
using stated choice experiments.

But, there are obvious reasons for spatial variations in preferences.

The spatial arrangement of socio-demographic profiles of
respondents is likely to impact the geographical distribution of
preferences.

The environmental conditions within a particular locality are
likely to influence preferences.
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Exploratory spatial data analysis provides different insights about
preferences:

its distribution;

regional and local outliers;

regional trends; and,

the level of spatial autocorrelation.

Distributions of preferences are likely to be both spatially and
socially uneven, meaning that evaluating the regional nature of
benefits delivers advantages from the political and policy analysis
viewpoints.

It can help policy decision makers locate areas of value and
thus allows more efficient targeting of efforts.
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Previous studies have shown that preferences are positively
spatially correlated.

Therefore, it seems reasonable to expect positive spatial clustering
of latent class probabilities membership (i.e., membership to latent
classes is spatially related).

Respondents who live close to one another are more likely to
belong in a similar class compared to respondent who do not
reside close to one another.
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The spatial dimension of preferences is now starting to gain more
attention—however, there are a number of unanswered questions.

One of these questions relates to how best to accommodate the
possibility that the unobserved factors that explain membership to
latent classes may be spatially related.

This paper hopes to shed some light on this
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Finite mixture models are now widely used to analyse revealed and
stated preference data. Their appeal is the flexibility that they afford
to the analyst.

With the correct assumptions, they can uncover preference
heterogeneity, the presence of error variance
heteroscedasticity and a range of processing strategies.

At the heart of these models is the assumption that respondents
belong in a given class.
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However, it is obviously not possible to know membership
beforehand with certainty and, thus, it remains latent.

To work around this, based on observed choice behaviour,
probabilistic conditions are imposed on each class.

In doing so, the presence of each class can be established up to a
probability, with the full probability per respondent allocated
across all classes.
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Typically, the class membership function, Q, associated with a given
class c is given as:

Qcn = γc +θczn+εc,

where γc is the class constant, θc is a vector of class-specific
parameters for the z vector of individual characteristics for
respondent n (e.g., socio-demographic and perhaps some
attitudinal variables), and εc is the class-specific error term.

Assuming the error terms are iid type I extreme value distributed
means that the unconditional class probabilities can be retrieved
using a multinomial logit specification.
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Notwithstanding the ability to include individual characteristics in
the latent class membership function, there is a possibility that the
unobserved factors that explain membership to latent classes may
be spatially related.

If so, the errors are spatially arranged.

This means that the assumption that the error terms are
independent of one another is violated.

Not addressing this could mean the model is mis-specified in the
systematic component of the latent class membership function—in
particular, the omission of variables that are spatially clustered.
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In this paper we allow spatial dependence to enter through the
membership function errors.

The key assumption of this model is that spatial autocorrelation is
treated as a nuisance and as an estimation problem, and as
something to be estimated.

This is accommodated by decomposing the overall membership
error into two components, namely a aspatial error term that is iid
type I extreme value distributed that satisfies the standard
assumption, and a spatial error term that captures the pattern of
spatial dependence between errors for connected observations.
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The membership error can be rewritten as:

εc = ρcζc +ϕc,

where ρc and ζc are, respectively, the spatial error parameter and
the term indicating the spatial component of error term for class c
and ϕc is the aspatial error term.

The parameter ρ indicates the extent to which the spatial
component of the errors ζ are correlated with one another for
nearby observations.

If ρ ≠ 0, then we have a pattern of spatial dependence between
the errors for connected observations, but if ρ = 0 we can
proceed to estimate class membership by the multinomial
logit specification in the conventional manner.
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The spatial component of error term is defined as:

ζc ∼MVN(0,Σc) ,

where Σc is the symmetrical N ×N covariance matrix.

The (Euclidean) distances between sampled respondents are
represented by a symmetrical N ×N distance matrix D.

The value of covariance between two locations can be obtained by
scaling the distance matrix by a negative exponential function, as is
common practice in spatial models:

Σcij = exp(−λcDij) .
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The unconditional class probability for a given class and
respondent, πcn , is the weighted average of the class probability
evaluated at different values of ζc, with the weights given by f (ζc):

πcn =∫
exp(γc +θczn+ρζcn)
∑
∀c

exp(γc +θczn+ρζcn)
f (ζc)d(ζc) .

The unconditional class probabilities are approximated through
simulating the probabilities over a large number of draws, R, and
averaging the results.

This average is the simulated unconditional class probability:

πcn =
1

R

R

∑
r=1

exp(γc +θczn+ρζcrn
)

∑
∀c

exp(γc +θczn+ρζcrn
)

.
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This paper seeks to assess the bias caused by estimating aspatial
latent class models.

A natural way to achieve this is to compare the performance of the
modelling approaches on simulated data with a known data
generating process.
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The data generating process begins by generating a spatial point
pattern to depict the irregularly distribution of sampled residential
locations within a study region S.

The study region is 100 km by 150 km and include a sample of 500
respondents.

The sample is assumed to be distributed according to a
homogeneous Poisson process.
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The point pattern has
stationary and isotropic
characteristics and
resembles complete
spatial randomness,
meaning that intensity of
the simulated residential
locations do not vary
spatially.
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Respondents belong in
one of two classes.

Approximately 70
percent belong in
class 1.

A degree of spatial
clustering is assumed.
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Kriged surface of
interpolated class
membership.
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The simulated choice experiment consists of three attributes: two
environmental attributes and a cost attribute, denoted respectively
using A, B and C.

The two environmental attributes are qualitative dummy
variables.

The cost levels areAC4,AC8,AC12 andAC16.

The choice tasks are defined as having three alternatives.

An orthogonal main-effects experimental design was generated to
produce 32 such choice tasks.

This was blocked in four, such that each simulated respondent
completed 8 tasks.
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Generation of choice data



The underlying data is generated based on:

Class 1 Class 2

βA 1.6 -0.6
βB 1.0 0.9
βC -0.2 -0.1
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Actual Aspatial LC Spatial LC

Class 1
βA 1.600 1.680 (0.126) 1.605 (0.126)
βB 1.000 0.929 (0.073) 0.942 (0.071)
βC -0.200 -0.193 (0.011) -0.190 (0.010)

Class 2
βA -0.600 -0.596 (0.123) -0.690 (0.131)
βB 0.900 0.958 (0.103) 0.916 (0.108)
βC -0.100 -0.105 (0.010) -0.103 (0.011)

γc=1 0.496 (0.182) 1.010 (0.324)
ρc=1 2.143 (0.232)
λc=1 3.476 (0.193)

Log-likelihood -3,566.343 -3,565.918

Both models produce
equivalent model fits.

But this is to be
expected: the
unconditional
class probabilities
are averaged over
the draws.
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Importantly though, ρ
and lambda are both
significant.

This confirm the
incidence of positive
spatial clustering of
latent class
probabilities.
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Class membership
errors for an
observation, therefore,
tend to vary
systematically in size
with the errors for
other nearby
observations.
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There is also some
evidence that
estimated parameters
are closer to the true
values.
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The Kriged surface
of interpolated WTP
have considerably
more variance
under the aspatial
LC model.

23 / 30

Background Modelling approach Main findings

Implications for spatial interpolation



The Kriged surface
of interpolated WTP
have considerably
more variance
under the aspatial
LC model.

23 / 30

Background Modelling approach Main findings

Implications for spatial interpolation



This paper explores accommodating spatial clusters when
analysing discrete choice experiments.

Given that this clustering of residuals violates the assumption that
the error terms are independent of one another, it raises concerns
on the appropriateness of the widespread use of aspatial latent
class models.

However ... more work is needed!

The paper is very much a work in progress.

The results are not as convincing as hoped.

Much more work is needed!
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When planning a sample survey of spatial units, it is important to
appropriately determine the sample size.

If it is too large, a huge amount of resources are required; if it is
too small, the results may become inefficient and as a
consequence not useful.

Key to this is the concept of spatial autocorrelation: values at
positions near to one another are more likely to be similar (and thus
have less variance) than values at distances further apart from one
another.
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Spatial sampling strategies



Creating an optimal sampling design requires balancing accuracy
of prediction (requiring more samples) with minimizing the cost of
sampling (limiting the number of samples and attendant cost of
gathering them).

If the variable of interest is spatially correlated (i.e., values nearby
are more similar than values farther apart), then taking samples
close to one another may not increase prediction accuracy and will
increase costs.

A well spread out sample is sometimes called spatially
balanced.

With knowledge of spatial autocorrelation it is possible to improve
the sampling efficiency in terms of the estimator error variance in
relation to sample design and sample size.
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samp50 samp100 samp150 samp200 samp250 samp500

rand.smp 7.520534 7.404686 7.318954 7.319755 7.299141 7.237014
strat.50 7.361887 7.423310 7.257290 7.292310 7.260606 7.229819
strat.25 7.573648 7.258952 7.381485 7.289712 7.249509 7.186121
buff0.05 7.486357 7.373092 7.283127 7.269754 7.222936 7.193185
buff1.25 7.455260 7.381288 7.298650 7.235954 7.231267 7.234802
buff2.00 7.482806 7.343476 7.280118 7.218792 7.184569 7.094057
spatbald 7.585846 7.370522 7.278839 7.197978 7.190398 7.155839

Mean of WTP predictions

28 / 30

Background Modelling approach Main findings

Results so far



samp50 samp100 samp150 samp200 samp250 samp500

rand.smp 0.7226391 0.3374207 0.2852943 0.1326973 0.1340184 0.04482396
strat.50 0.7253969 0.3239714 0.2414581 0.1278017 0.1429852 0.04413522
strat.25 0.9412702 0.3623901 0.1866670 0.1606991 0.1443116 0.03979999
buff0.05 0.5992019 0.3380530 0.3548016 0.2410333 0.1755851 0.04729270
buff1.25 0.6145421 0.3392602 0.3416403 0.1933354 0.1376302 0.03736202
buff2.00 0.5889807 0.4018739 0.3555331 0.2066023 0.1305430 0.01991544
spatbald 0.5378573 0.4260316 0.2438908 0.1309698 0.1007679 0.03060867

Variance of WTP predictions

29 / 30

Background Modelling approach Main findings

Results so far



The main disadvantage of a classical random sampling approach is
that it ignores any spatial dependence.

If spatial dependence exists, random sampling may lead to data
redundancy.
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