Introducing random heterogeneity in the µRRM model

Romain Crastes dit Sourd, Matthew Beck

Outline

- The μ RRM model
- Potential evolutions
- Application
- Conclusions

Let's first introduce the classical RRM model (Chorus, 2010)

• Let's first introduce the classical RRM model (Chorus, 2010)

$$RR_{in} = \sum_{j \neq i} \sum_{m} \ln(1 + \exp(\beta_m [x_{jmn} - x_{imn}]) + \varepsilon_{in}$$

- ε_{in} is i.i.d type I EV distributed with variance $\pi^2/6$
- Choice probabilities correspond to

$$\frac{e^{-R_{in}}}{\sum_{j} e^{-R_{jn}}}$$

Now let's move to the μRRM model (Cranenburgh *et al.*, 2015)

- This approach generalizes the classical RRM model
- The variance of the error term can be estimated
- The size of the scale parameter corresponds to the profundity of regret imposed by the μRRM model
- « the notion of profundity of regret refers the extent to which RRM models impose regret minimization behaviour »

The µRRM model

•
$$RR_{in} = \sum_{j \neq i} \sum_{m} \ln(1 + \exp(\frac{\beta_m}{\mu}[x_{jmn} - x_{imn})] + \varepsilon_{in}$$

With $\varepsilon_{in} \sim i. i. d. EV(0,\mu)$

• Choice probabilities now correspond to

$$\frac{e^{-\mu R_{in}}}{\sum_{j} e^{-\mu R_{jn}}}$$

The µRRM model – special cases

- When μ is arbitrarily large, the μRRM model exhibits linear additive random utility maximization
- When μ is arbitrarily small, the difference between the utility one gets from a gain and the regret one gets from a loss is very strong. In this case, the μRRM model takes the form of the P-RRM model
- When μ is close to 1 the model corresponds to a normal RRM model

Why using the the μRRM model rather than a Latent class RUM-RRM model?

- The μRRM approach allows to model the profundity of regret in a continuous manner
- It gives a measure of « how much regret there is » rather than « what is the percentage of people expressing a regret minimisation behaviour »
- The μRRM can emulate the results from a LC RUM-RRM while avoiding the estimation issues when μ is set up to be random

Going beyond the µRRM model (1)

- In this work, we propose a series of extensions for the μRRM model
- We seek to accomodate heterogeneity in the profundity of regret
- Different people use different decision rules
- Different attributes trigger different choice strategies

Going beyond the µRRM model (2)

- We propose the following extensions:
- The random μRRM model
 > μ is allowed to be normally distributed across respondents
- The multiple random µRRM model
 - Different, randomly distributed μ are estimated for each attribute

The random µRRM model

- $RR_{in} = \sum_{j \neq i} \sum_{m} \ln(1 + \exp(\frac{\beta_m}{\mu}[x_{jm} x_{im}]) + \varepsilon_i$
- μ now corresponds to mean_μ + sd_u * random draws
- The random draws are normally distributed
- It is a very straightforward change to implement

The multiple random µRRM model

•
$$RR_{in} = \sum_{j \neq i} \sum_{m} \mu m \cdot \ln(1 + \exp(\frac{\beta_m}{\mu m} [x_{jm} - x_{im}]) + \varepsilon_i$$

- Each μ m now corresponds to mean_ μ m + sd_um * random draws
- This model does not seem to converge well unless we estimate a full variance_covariance matrix for the random draws
- In this case, the choice probability correspond to:

$$\frac{e^{-R_{in}}}{\sum_{j} e^{-R_{jn}}}$$

Application

- Our dataset comes from an Australian regional mobility survey. Each respondent faced 10 choice tasks involving a choice between four labelled alternatives: plane and taxi, plane and shuttle, car, coach and taxi
- <u>Attributes:</u>
 - departure time
 - > average travel time
 - travel time early
 - travel time late
 - Cost
 - ➤ wait time for transfer service
 - cost of transfer service
 - Duration for transfer service
- 811 respondents

	uRRM		Random uRRM		Multiple random	
					uRRM	
	est	t ratio	est	t ratio	est	t ratio
bdepatime	1.74	9.44	1.65	5.21	1.95	8.49
btravtime	-0.76	-11.51	-0.81	-4.48	-0.84	-3.01
bearlymin	-2.47	-1.55	-2.56	-1.78	-2.99	-3.03
blatemin	-1.41	-8.33	-1.44	-4.45	-1.45	-1.61
btravcost	-2.06	-11.70	-2.04	-10.45	-2.02	-13.16
bwaittime	-2.52	-3.99	-2.45	-3.99	-2.73	-3.27
btrantime	6.36	2.20	5.25	4.12	4.95	3.99
btrancost	-3.55	3.11	-3.01	2.54	-2.86	-2.05
alt1	-0.16	-7.89	-0.19	-5.58	-0.44	-2.51
alt2	-0.65	-1.47	-0.48	-1.42	0.19	1.12
alt3	-0.52	-6.47	-0.52	-5.54	-1.75	-22.25

	uRRM		Random uRRM		Multiple random uRRM	
	est	t ratio	est	t ratio	est	t ratio
mu1	1.21	3.92	1.14	3.87	3.10	3.15
mu2					23.38	3.80
mu3					-0.34	-2.89
mu4					-0.65	-1.49
mu5					6.27	0.01
mu6					-0.05	-2.56
mu7					-0.16	-2.25
mu8					-0.26	-2.00
sdmu1			0.08	0.78	-0.05	0.01
sdmu2					0.11	2.87
sdmu3					0.34	1.99
sdmu4					-0.43	-1.36
sdmu5					0.14	-0.93
sdmu6					0.14	2.24
sdmu7					0.26	0.89
sdmu8					0.15	1.94
AIC	17963.13		179851.54		17880.81	
LL	-8969.565 -8958.781		-8885.404			

Discussion

• First results look promising:

Significant observed heterogeneity in the profundity of regret
 Significant rando heterogeneity

- Model performed (much) better than a LC RUM RRM
 - More convenient way to introduce heterogeneity in decision rules in SP survey
- Some challenges: « more convenient » doesn't mean perfect (lots of issues with local optimas)

