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Simulation error

‒Discrete choice data
‒Mixed (random parameters) logit models
‒Estimation via simulated maximum likelihood method

‒Simulating the value of the log-likelihood function
‒Necessarily associated with simulation error
‒Depends on the number and type of draws

‒A different set of draws = somewhat different estimation results



Simulation error vs. the number of draws



Quasi Monte Carlo methods

‒Quasi Monte Carlo methods reduce simulation-driven variation
‒Halton sequence (Train 2000, Bhat 2001), 

‒Sobol sequence (Garrido2003)

‒Randomized (t,m,s)-nets (Sándorand Train 2004)

‒Modified Latin Hypercube (Hess, Train and Polak2006)

‒Lattice rules (Mungeret al.2012)

‒Generalized antithetic draws with double base shuffling (Sidharthanand 
Srinivasan 2010)

‒Shuffling, scrambling sequences (Bhat 2003, Hess, Polakand Daly 2003, Hess 
and Polak2003, Wang and Kockelman2008)



Pseudo-random vs. Halton sequence



Halton vs. scrambled Halton sequence



Gaps in existing evidence

‒What is the extent of the simulation bias resulting from using different 
numbers of different types of draws in various conditions (datasets)?
‒Shortcoming of the existing studies:
‒Low numbers of QMC draws (≤ 200)

‒Low number of repetitions for each type and number of draws (≤ 10)

‒Results likely to depend on the number of observations (individuals, choice tasks per 
individual)

‒Examples of 100 Halton draws leading to smaller bias than 1,000 pseudo-
random draws (e.g., Bhat, 2001) have led some to actually use very few draws 
for simulations

‒Using too few draws can lead to spurious convergence of models that 
are theoretically or empirically unidentified (Chiouand Walker 2007)

‒Our study aims at filling these gaps



Design of our simulation study –
Choice task setting and explanatory variables



Design of our simulation study –
Choice task setting and explanatory variables



Methodology of comparisons

−We want a measure that takes expected values into account but also 
penalizes variance
−For typical equality tests –the larger the variance, the more difficult to reject 

the equality hypothesis

−Testing equivalence instead of equality
−Reverse the null and the alternative hypotheses

−Test if the absolute difference is higher than a priori defined ‘acceptable’ level

−Minimum Tolerance Level (MTL)
−What is the minimum ‘acceptable’ difference that allows to conclude that two 

values are equivalent at the required significance level

−How many draws of type A are required, so that with 95% probability the 
difference in LL / estimates / s.e./ z-stats is not going to be statistically 
different than:
−The critical value of the LR-test

−If the model was estimated using n draws of type B



Example –using MTL for the values of the LL function

−Re-estimating the model using a different set of draws is likely to 
result in a somewhat different value of the LL function

−If LL is used for inference (e.g., LR-test), it is possible to conclude that 
one specification is superior to another only because one was more 
‘lucky’ with the draws

−By using the MTL approach we are able to evaluate the probability of 
such an outcome
−Assume h = 0.05, the interpretation of MTL0.05 is that with 95% probability 

using a different set of draws would not cause the difference in LL values to be 
higher than MTL0.05

−We can provide recommendations wrt the minimum number of draws that 
would result in MTL0.05 lower than the specified level
−E.g., the critical value of the LR-test –probability of erroneously concluding that one 

model is preferred to another (because of simulation error) is lower than a desired 
significance level, e.g., 0.05



Results –relative performance of types of draws

−Example: MTL0.05of LL for MXL-design, 400 x 4:
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Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for the log-likelihood function value

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.00% 3.70% 22.22% 74.08%

200 0.00% 0.00% 0.00% 100.00%

500 0.00% 0.00% 3.70% 96.30%

1,000 0.00% 0.00% 3.70% 96.30%

2,000 0.00% 0.00% 0.00% 100.00%

5,000 0.00% 0.00% 0.00% 100.00%

10,000 0.00% 0.00% 0.00% 100.00%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for parameter estimates

Number of draws used Pseudo-random MLHS Halton Sobol

100 0.37% 7.41% 34.07% 58.15%

200 0.37% 0.00% 25.19% 74.44%

500 0.00% 0.37% 14.81% 84.81%

1,000 0.00% 0.00% 13.70% 86.30%

2,000 0.00% 0.00% 8.89% 91.11%

5,000 0.00% 0.00% 2.22% 97.78%

10,000 0.00% 0.00% 4.07% 95.93%



Percentage of times each type of draws resulted in the lowest 
simulation error (MTL0.05) for z-stats

Number of draws used Pseudo-random MLHS Halton Sobol

100 2.22% 6.67% 34.07% 57.04%

200 0.37% 3.33% 28.15% 68.15%

500 0.37% 1.48% 18.15% 80.00%

1,000 2.59% 1.48% 21.11% 74.81%

2,000 0.37% 1.11% 19.26% 79.26%

5,000 3.70% 1.11% 5.56% 89.63%

10,000 0.00% 0.00% 4.44% 95.56%



Results –Sobol draws consistently perform best

−Minimum number of Sobol draws (on average) that outperforms 
(in terms of MTL0.05) 10,000 draws of each type:

−How many more draws (relatively, on average) required to perform as 
good as Sobol draws:

Pseudo-random MLHS Halton

LL 1 167 2 185 8 889

Parameterestimates 2 928 3 648 9 537

z-stats 3 366 4 106 9 374

Pseudo-random MLHS Halton

LL 11.82 5.32 2.18

Parameterestimates 5.54 4.08 2.00

z-stats 5.47 4.34 1.97



Results –how many draws are ‘enough’?

−Using more draws is always better to using fewer draws

−How many are ‘enough’ depends on the desired precision 
level

−Log-likelihood:
−Imagine you are comparing 2 specifications using LR-test (d.f. = 1)

−Simulation error low enough to have 95% / 99% probability of not erroneously 
concluding that one model is better than the other
−In other words, 95% / 99% of the times the (simulation driven) difference in LL must 

be lower than 1.9207 (at h = 0.05)

−This is exactly what MTL0.05 and MTL0.01 can be used for!

400 x 4 800 x 4 1,200 x4 400 x 8 800 x 8 1,200 x8 400 x 12 800 x 12 1,200 x12

p = 0.05 200 500 500 500 1,000 1,000 1,000 2,000 2,000

p = 0.01 500 500 500 1,000 1,000 2,000 1,000 5,000 5,000



Results –how many draws are ‘enough’?

−Parameter estimates:
−No absolute difference level

−The numbers of draws required for 95% / 99% probability that the difference 
between parameter estimates < 5%:

−The numbers of draws required for 95% / 99% probability that the difference 
between parameter estimates < 1%:

−Similar results for comparisons with models estimated using 1,000,000 draws

−The required number of draws typically higher for standard deviations, lower for means

400 x 4 800 x 4 1,200 x4 400 x 8 800 x 8 1,200 x8 400 x 12 800 x 12 1,200 x12

p = 0.05 20,000 10,000 10,000 20,000 10,000 10,000 20,000 20,000 10,000

p = 0.01 50,000 20,000 20,000 50,000 20,000 10,000 20,000 20,000 20,000

400 x 4 800 x 4 1,200 x4 400 x 8 800 x 8 1,200 x8 400 x 12 800 x 12 1,200 x12

p = 0.05 5,000 2,000 2,000 2,000 1,000 1,000 2,000 2,000 1,000

p = 0.01 5,000 2,000 2,000 5,000 2,000 2,000 2,000 2,000 2,000



Using too few draws and identification problems –
percentage of times z-statistics exceeded 1.96
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Summary and conclusions

‒We investigate the performance of the 4 most commonly used types of draws for simulating 
log-likelihood in the mixed logit model setting

‒We find Sobol draws consistently result in the lowest simulation error

Sobol draws recommended 

‒Conditional on our simulation setting, we find one needs more draws than typically used for 
‘reliable’ estimation results
‒If ‘reliable’ is defined as having no more than 5% or 1% chance of erroneous conclusion that a model 

is significantly better than the same model estimated using a different set of draws (LR-test with 1 
d.f.): 

Use at least 2,000 (5%) or 5,000 (1%) draws

‒Could be less if the number of individuals is less than 1,200 or the number of choice tasks per individual less 
than 12

‒If ‘reliable’ is defined as being 95% sure that one has no more than 5% or 1% simulation-driven 
variation in parameter estimates:

Use at least 5,000 (5%) or 20,000 (1%) draws

‒Could be less if the number of individuals is more than 400 or the number of choice tasks per individual is more 
than 4

‒Evidence of erroneous inference on significance (both ways) if too few draws are used


