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Simulation error

—Discrete choice data
— Mixed (random parameters) logit models
— Estimation via simulated maximum likelihood method
—Simulatinghe value of the logikelihood function
— Necessarily associated with simulation error
— Depends on the number and type of draws

—Adifferent set of draws somewhadifferent estimatiorresults



Simulatiorerror vs. the number of draws
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Quasi Monte Carlmethods

—Quasi Monte Carlo methods redusienulationrdrivenvariation
— Halton sequencélrain 2000Bhat 2001,
— Sobol sequencgsarrido2003)
— Randomizedtfm,9-nets(Sandorand Trair?2004)
— Modified LatinHypercubgHess Train and?olak2006)
— Lattice rulesMungeret al.2012)

— Generalizedntithetic draws with double bashuffling(Sidhartharand
Srinivasar2010

— Shuffling, scrambling sequendg&hat 2003HessPolakand Daly2003 Hess
andPolak2003 Wang andKockelmar2008)




Pseuderandom vs. Halton sequence

Scatter plot of 1000 draws for 2 pse

udo-random sequences Scatter plot of 1000 draws for 2 Halton sequences
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Halton vs. scrambled Halton sequence

Scatter plot matrix of 100 draws for 8 Halton sequences Scatter plot matrix of 100 draws for 8 scrambled Halton sequences
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Gaps In existing evidence

—What is the extent of the simulation bias resulfirgn using different
numbers of different types of draws in various conditions (datgsets

— Shortcoming of the existing studies:
— Lownumberso f QMC draws (< 200)
—Low number of repetitions for each type
— Results likely to depend on the number of observatjorBvidualschoice tasks per
individual)
— Example®f 100 Halton draws leading to smaller bias than 1,000 pseudo
random draws€.g., Bhat, 2001have led some to actually use very few draws
for simulations

—Usingtoo few draws can lead to spurious convergence of models that
are theoretically or empiricaliynidentified(Chiouand Walke2007)

—Qurstudy aims at fillinthese gaps




Design of our simulation study
Choice task setting and explanatory variables

) Assumed Possible values of the explanatory variables

Explanatory variables -

) : parameter Alternative 1 : Ca
(choice attributes) . Alternative 2 Alternative 3

distribution (status quo / opt-out)

X, (alternative specific constant) N (*l.0,0.S) X, =1 X, =0 X, =0
X, (dummy) N(1.0,0.5) X,=0 X, €{0,1} X, €{0,1}
X, (dummy) N(I.0,0.S) X, =0 X, E{O,l} X, E{O,l}
X, (dummy) N(I.0,0.S) X, =0 X, 6{0,1} X, E{O,l}

X (discrete)

N(-1.0,0.5) X;=0 Xse{'l,2,3,4} Xie{1,2_,3_,4}




Design of our simulation study
Choice task setting and explanatory variables

Draws Dartasets

Number of
choice tasks per
individual

Repetitions Number of Number of Experimental

individuals designs

Tvpes of draws
’ draws

100
200
500

1,000

psendo-randon %"OOO o X
VILHS 5,000 4 400 OOD-design
o 10,000 800 MNL-design

o 20,000% 12 1,200 MXL-design
o 50,000%

100,000%
200,000%
500,000%

1,000,000%

100

o's]

*Selected settings only.



Methodology of comparisons

—We want a measure that takes expected values into account but also
penalizes variance

— For typical equality teststhe larger the variance, the more difficult to reject
the equality hypothesis

—Testing equivalence instead of equality
— Reverse the null and the alternative hypotheses

-Test 1 f the absolute difference 1Is
—Minimum Tolerance Level (MTL)
-What i1 s the minimum ‘acceptabl e’ di

values are equivalent at the required significance level
—How many draws of type A are required, so that with 95% probability the
difference inLL /estimated s.e./ z-statsis not going to be statistically
differentthan:
— The critical value of the HBst
— If the model wagstimatedusingn draws of typeB



Example-using MTL for the values of the LL function

—Reestimating the model using a different set of draws is likely to
result in a somewhat different value of the LL function

—If LL is used for inference (e.gsteR), it is possible to conclude that
one specification is superior to another only because one was more
“l ucky'drawmsi t h t he

—By using the MTL approach we are able to evaluate the probability of
such an outcome

—Assume" = 0.05, the interpretation d¥iTL, o is that with 95% probability
using a different set of draws would not cause the difference in LL values to be
higher thanMTlL o5

—We can provide recommendationst the minimum number of draws that
would result inMTlg ,; lower than the specified level
- E.g., the critical value of the-té®t— probabilityof erroneously concluding that one

model is preferred to another (because of simulation error) is lower than a desired
significance level, e.§.,05



Results-relative performance of types of draws

—ExampleMTL, 4 of LL for MXddesign, 400 x 4:
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Percentage afimes each type of draws resulted in the lowest
simulation erroi(MTly ) for the log-likelihood function value

Number of draws used Pseuderandom

100
200
500
1,000
2,000
5,000

10,000

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

MLHS

3.70%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

Halton

22.22%

0.00%

3.70%

3.70%

0.00%

0.00%

0.00%

Sobol

74.08%
100.00%
96.30%
96.30%
100.00%
100.00%

100.00%



Percentage afimes each type of draws resulted in the lowest
simulation erroi(MTl oo for parameter estimates

Number of draws used Pseuderandom MLHS Halton Sobol

100 0.37% 7.41% 34.07% 58.15%

200 0.37% 0.00% 25.19% 74.44%

500 0.00% 0.37% 14.81% 84.81%

1,000 0.00% 0.00% 13.70% 86.30%

2,000 0.00% 0.00% 8.89% 91.11%

5,000 0.00% 0.00% 2.22% 97.78%

10,000 0.00% 0.00% 4.07% 95.93%



Percentage afimes each type of draws resulted in the lowest

simulation erroi(MTly, ) for z-stats

Number of draws used Pseuderandom

100
200
500
1,000
2,000
5,000

10,000

2.22%

0.37%

0.37%

2.59%

0.37%

3.70%

0.00%

MLHS

6.67%

3.33%

1.48%

1.48%

1.11%

1.11%

0.00%

Halton

34.07%
28.15%
18.15%
21.11%
19.26%
5.56%

4.44%

Sobol

57.04%
68.15%
80.00%
74.81%
79.26%
89.63%

95.56%



Results- Sobol draws consistently perform best

—Minimum number of Sobol draws (on average) that outperforms
(in terms ofMTL, o9 10,000 draws of each type:

Pseudeaandom MLHS Halton
LL 1167 2 185 8 889
Parameterestimates 2 928 3648 9 537
z-stats 3 366 4 106 9 374

—How many more draws (relatively, on average) required to perform as
good as Sobol draws:

Pseudeaandom MLHS Halton
LL 11.82 5.32 2.18
Parameterestimates 5.54 4.08 2.00

z-stats 5.47 4.34 1.97



Resultsshow many dr aws ar e

—Usingmore draws islways betteto using fewedraws

-How many are ‘enough’ depeni
level
—Loglikelihood:

—Imagine you are comparing 2 specifications usiAg&tRd.f.= 1)
— Simulation error low enough to have 95% / 99% probability of not erroneously
concluding that one model is better than the other
— In other words, 95% / 99% of the times the (simulation driven) diffeiaride must
be lower tharnl.9207 (at =0.05)

— This is exactly whadTL, ,;andMTL 5, can be used for!
400x 4 800x4 1,200 400x8 800x8 1,200x8 400 x 12 800 x 12 1,200 x12

p=0.05 200 500 500 500 1,000 1,000 1,000 2,000 2,000
p=0.01 500 500 500 1,000 1,000 2,000 1,000 5,000 5,000



Resultsshow many dr aws ar e

—Parameter estimates:

— No absolute difference level
— The numbers of draws requiréar 95% / 99% probability théte difference
between parameter estimates < 5%:
400x4 800x4 12004 400x8 800x8 1,200x8 400x 12 800 x 12 1,200 x12

p=0.05 5,000 2,000 2,000 2,000 1,000 1,000 2,000 2,000 1,000
p=0.01 5,000 2,000 2,000 5,000 2,000 2,000 2,000 2,000 2,000

—The numbers of draws required for 95% / 99% probability that the difference
between parameter estimatesi€bo:
400x4 800x4 1,200 400x8 800x8 1,200x8 400 x 12 800 x 12 1,200 x12

p=0.05 20000 10000 10000 20000 10000 10000 20,000 20000 10,000
p=0.01 50000 20000 20000 50000 20000 10000 20,000 20000 20,000

— Similar results for comparisons with models estimated using 1,000,000 draws
— The required number of draws typically higher for standard deviations, lower for means



Using too few drawand identification problems
percentageof times zstatisticsexceeded 1.96

Example A-s.d.of ASC, MNHesign, 1,200 x 4
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Example B-s.d.of a binary variable, MXdesign, 1,200 x 4
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Summary and conclusions

— We investigate the performance of the 4 most commonly used types of draws for simulating
log-likelihood in the mixed logit model setting

— We find Sobol draws consistently result in the lowest simulation error
Sobol draws recommended

— Conditional on our simulation setting, we find one needs more draws than typically used for
‘“reliabl e’ estimation resul ts

-1 f ‘“reliabl e’ I's defined as havi n]g no more th
:jsfs[gnlflcantly better than the same model estimated using a different set of dratest(isRh 1

Use at least 2,000 (5%) or 5,000 (1%) draws

— Could be less if the number of individuals is less than 1,200 or the number of choice tasks per individual less

than 12
-1 f “rel i abdeiag95% ssire tthag dne hme ndore @ahan 5%r 1% simulatiowriven

variation in parameter estimates:

Use at leas$,000 (5%) or 20,000 (1%) draws

- t(rj]oul(zlbe less if the number of individuals is more than 400 or the number of choice tasks per individual is more
an

— Evidence of erroneous inference on significance (both ways) if too few draws are used



