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Simulation error

— Discrete choice data

— Mixed (random parameters) logit models
— Estimation via simulated maximum likelihood method

—Simulating the value of the log-likelihood function

— Necessarily associated with simulation error
— Depends on the number and type of draws

— A different set of draws = somewhat different estimation results



Simulation error vs. the number of draws
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Quasi Monte Carlo methods

—Quasi Monte Carlo methods reduce simulation-driven variation
— Halton sequence (Train 2000, Bhat 2001),
— Sobol sequence (Garrido 2003)
— Randomized (t,m,s)-nets (Sandor and Train 2004)
— Modified Latin Hypercube (Hess, Train and Polak 2006)
— Lattice rules (Munger et al. 2012)

— Generalized antithetic draws with double base shuffling (Sidharthan and
Srinivasan 2010)

— Shuffling, scrambling sequences (Bhat 2003, Hess, Polak and Daly 2003, Hess
and Polak 2003, Wang and Kockelman 2008)




Pseudo-random vs. Halton sequence
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Halton vs. scrambled Halton sequence

matrix of

100 draws for 8 Halton

sequences
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Gaps in existing evidence

—What is the extent of the simulation bias resulting from using different
numbers of different types of draws in various conditions (datasets)?

— Shortcoming of the existing studies:
— Low numbers of QMC draws (< 200)
— Low number of repetitions for each type and number of draws (< 10)

— Results likely to depend on the number of observations (individuals, choice tasks per
individual)

— Examples of 100 Halton draws leading to smaller bias than 1,000 pseudo-
random draws (e.g., Bhat, 2001) have led some to actually use very few draws
for simulations

—Using too few draws can lead to spurious convergence of models that
are theoretically or empirically unidentified (Chiou and Walker 2007)

—Qur study aims at filling these gaps



Design of our simulation study —
Choice task setting and explanatory variables

) Assumed Possible values of the explanatory variables

Explanatory variables -

) : parameter Alternative 1 : Ca
(choice attributes) . Alternative 2 Alternative 3

distribution (status quo / opt-out)

X, (alternative specific constant) N (*l.0,0.S) X, =1 X, =0 X, =0
X, (dummy) N(1.0,0.5) X, =0 X, €{0,1} X, €{0,1}
X, (dummy) N(I.0,0.S) X, =0 X, 6{0,1} X, E{O,l}
X, (dummy) N(I.0,0.S) X, =0 X, 6{0,1} X, E{O,l}

X, (discrete) N(-1.0,0.5) X, =0 X, e{1,2,3,4) X, €{1,2,3,4)




Design of our simulation study —
Choice task setting and explanatory variables

Draws Datasets

Number of
choice tasks per
individual

Repetitions Number of

Number of Experimental
draws

individuals designs

Types of draws

100

200

500
1,000

2,000
p“‘?ﬁ‘ﬁ‘_’fﬁ " 5,000 4 400 OOD-design
Lon 10,000 8 800 MNL-design

Sobol 20,000%* 12 1,200 MXI -design
0% 50,000+

100,000%
200,000%
500,000%

1,000,000%

1,000

*Selected settings only.



Methodology of comparisons

- We need a measure that takes expected values into account but also

penalizes variance
— For typical equality tests — the larger the variance, the more difficult to reject
the equality hypothesis

— Testing equivalence instead of equality
— Reverse the null and the alternative hypotheses
— Test if the absolute difference is higher than a priori defined ‘acceptable’ level

- Minimum Tolerance Level (MTL)

- What is the minimum ‘acceptable’ difference that allows to conclude that two
values are equivalent at the required significance level

- How many draws of type A are required, so that with 95% probability the
difference in LL / estimates / s.e. / z-stats is not going to be statistically
different than:

— The critical value of the LR-test
- If the model was estimated using n draws of type B



Example — using MTL for the values of the LL function

- Re-estimating the model using a different set of draws is likely to
result in a somewhat different value of the LL function

—If LL is used for inference (e.g., LR-test), it is possible to conclude that
one specification is superior to another only because one was more
‘lucky” with the draws

— By using the MTL approach we are able to evaluate the probability of
such an outcome
— Assume «a = 0.05, the interpretation of MTL, o is that with 95% probability

using a different set of draws would not cause the difference in LL values to be
higher than MTL, s

— We can provide recommendations for the minimum number of draws that
would result in MTL, o5 lower than the specified level
- E.g., the critical value of the LR-test — probability of erroneously concluding that one

model is preferred to another (because of simulation error) is lower than a desired
significance level, e.g., 0.05



Results — relative performance of types of draws

— Example: MTL, o of LL for MXL-design, 400 x 4:

——Pseudo-random
——MLHS

Halton
——Saobol
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Percentage of times each type of draws resulted in the lowest
simulation error (MTL, o) for the log-likelihood function value

Number of draws used  Pseudo-random MLHS Halton Sobol

100 0.00% 0.00% 18.52% 81.48%

200 0.00% 0.00% 29.63% 70.37%

500 0.00% 0.00% 22.22% 77.78%

1,000 0.00% 0.00% 25.93% 74.07%

2,000 0.00% 0.00% 0.00% 92.5%%

5,000 0.00% 0.00% 11.11% 81.48%

10,000 3.70% 3.70% 0.00% 81.48%



Percentage of times each type of draws resulted in the lowest
simulation error (MTL, 45) for parameter estimates

Number of draws used  Pseudo-random MLHS Halton Sobol

100 0.00% 0.37% 42.96% 56.67%

200 0.00% 0.00% 33.33% 66.67%

500 0.00% 0.00% 31.11% 68.89%

1,000 0.00% 0.00% 31.48% 68.52%

2,000 0.00% 0.00% 14.44% 78.15%

5,000 0.00% 0.00% 17.78% 74.81%

10,000 3.70% 3.70% 5.56% 75.93%



Percentage of times each type of draws resulted in the lowest
simulation error (MTL, 45) for z-stats

Number of draws used  Pseudo-random MLHS Halton Sobol

100 0.00% 0.37% 48.15% 51.48%

200 0.74% 1.85% 34.07% 63.33%

500 0.37% 2.22% 32.22% 65.19%

1,000 0.74% 1.85% 26.67% 70.74%

2,000 0.00% 4.44% 22.59% 65.56%

5,000 3.70% 1.11% 19.26% 68.52%

10,000 3.70% 3.70% 5.19% 76.30%



Results — Sobol draws consistently perform best

— Percent of additional draws needed to achieve the same simulation

error as Sobol draws:

Pseudo-random

. 889%
[776% - 1,020%]
. 361%
P
arameter estimates [331% - 392%]
z-stats e
[321% - 375%]

MLHS Halton
305% 66%
[258% - 360%] [47% - 87%]
209% 48%
[189% - 232%] [38% - 58%]
200% 51%
[182% - 219%] [42% - 60%]

* Based on regression analysis



Results — regression results
Dependent variable: log(MTL)

LL Betas Z stats
c 3.4432%% 0.5144%%* 2.7254%%
ons. (0.0693) (0.0363) (0.0316)
1.4637%% 0.8803 % 0.8366%**
Type of draws: Pseudo-random (0.0365) (0.0185) (0.0161)
0.8939%*3 0.6507*** 0.6140%%*
Type of draws: MLHS (0.0383) (0.0195) (0.0169)
0.324 %% 0.2261%%* 0.2297+%%
Type of draws: Halton (0.0384) (0.0195) (0.0170)
. 0.18037#* ~0.3372%%% -0.373G%**
Design is: MXL (0.0333) (0.0169) (0.0147)
. 0.0426 -0.0124 -0.1082%
Design is: OOD (0.0346) (0.0176) (0.0153)
. 0.61217%* -0.4829%% -0.0355%*
No.of CTis 8 (0.0323) (0.0164) (0.0143)
. 0.88947%% ~0.3424%% 0.2058%#%
No. of CTis 12 (0.0332) (0.0168) (0.0146)
o . 0428775 -0.3001%* 01334
No. of individuals is 800 (0.0326) (0.0165) (0.0144)
o . 0.681 17 -0.4943%% 0.2605%%*
No. of individuals is 1200 (0.0329) (0.0167) (0.0145)
_ -0.6387% -0.5764%% -0.5587%%
Log of No. of draws (0.0076) (0.0038) (0.0033)
Parameter for mean -L4881 -1.4266%%
(0.0136) (0.0118)
S0 0.3477%%* 0.1108%**
(0.0176) (0.0153)
Cost ~0.795 15 0.0302%*
' (0.0176) (0.0153)
R 0.9346 0.8535 0.8704
N 783 7830 7830




Results —how many draws are ‘enough’?

—Using more draws is always better to using fewer draws
—-How many are ‘enough’ depends on the desired precision level

—Log-likelihood:
- Imagine you are comparing 2 specifications using LR-test (d.f. = 1)
— Simulation error low enough to have 95% probability of not erroneously
concluding that one model is better than the other

- In other words, 95% of the times the (simulation driven) difference in LL must be
lower than 1.9207 (at a = 0.05)

— This is exactly what MTL, . can be used for!

400x4 800x4 1,200x4 400x8 800x8 1,200x8 400x12 800x12 1,200x12

p =0.05 120 230 340 300 600 890 470 920 1,370

p=0.01 300 575 850 750 1,500 2,225 1,175 2,300 3,425



Results —how many draws are ‘enough’?

— Parameter estimates:
— No absolute difference level
— The numbers of draws required for 95% probability that the difference
between parameter estimates :
400x4 800x4 1,200x4 400x8 800x8 1,200x8 400x12 800x12 1,200x 12
< 5% 2,050 1,220 870 890 530 380 1,130 670 480
<1% 33,420 19,850 14,180 14,450 8,590 6,130 18,450 10,960 7,820

— More draws required for standard deviations, ASC, dummies, fewer required
for means, cost

— Similar results for comparisons with models estimated using 1,000,000 draws



Using too few draws and identification problems —
percentage of times z-statistics exceeded 1.96

Panel A (MNL, NCT = 4, NP = 1200)

Panel B (MXL, NCT = 4, NP = 1200)
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“It must take ages to estimate models
with so many draws!”

— Estimation time (1 iteration = LL function evaluation + gradient)

— Data set: 400 respondents x 4 choice tasks
— Intel E5-2687W @ 3.00 GHz (12-core) CPU (no GPU used!)
— Efficient code implementation (Matlab, https://github.com/czaj/dce)

Number of draws 1,000 10,000 100,000 1,000,000

lteration time 0.25s 1ls 10 s 100 s


https://github.com/czaj/dce

Summary and conclusions

—We investigate the performance of the 4 most commonly used types
of draws for simulating log-likelihood in the mixed logit model setting

—We find Sobol draws consistently result in the lowest simulation error
Sobol draws recommended

— Conditional on our simulation setting, we find one needs more draws
than typically used for ‘reliable’ estimation results

Use at least 1,000 (5%) or 10,000 (1%) draws

- mean of the minimums; samples with fewer observations require fewer draws
for precise LL and more draws for precise betas, and vice versa

—Evidence of erroneous inference on significance (both ways), if too
few draws are used



