Comparing spatial interpolation with non-spatial predictions to model spatial WTP

Julian Sagebiel, Klaus Glenk, Robert J Johnston, Jürgen Meyerhoff

5th Workshop on Discrete Choice Modelling

Warsaw, October 5th 2016 Julian Sagebiel Institute for Ecological Economy Research IÖW, Berlin

 $V = \beta_0 ASCsq$

+[$\beta_1 ShFor + \beta_2 ShFor^2$]

$+ [\beta_{3}ShMai + \beta_{4}ShMai^{2}] + [\beta_{5}ShGra + \beta_{6}ShGra^{2}]$ $+ \beta_{7}FiSizHalf + \beta_{8}FiSizDouble + \beta_{9}Biodiv$ $+ \beta_{price}Price$

MWTP is defined as

 $-MWTP(x_n) = -\frac{f'(x_n)}{f'(Price)}$

- For forest share (inverse u-shaped):

 $MWTP_{ShFor} (SQ_{ShFor}) = -(\beta_1 + 2\beta_2 SQ_{ShFor})/\beta_{Price}$

Estimation Results

	Mixed Logit		
	Mean	SD	
ASCsq	204	3.428***	
ShFor	.125***	.104***	
ShFor^2	00127***	.000411	
FiSiz: Half	665***	1.01***	
FiSiz: Double	409***	.907***	
BioDiv	.222***	.746***	
ShMai	.006	.0047	
ShMai^2	00029***	.0003***	
ShGra	.0113	.0003	
ShGra^2	00027*	.00044***	
Price	0127***	-	

$$p < 0.1 * p < 0.05 * p < 0.01$$

4

Empirical Strategy

Non-Spatial Prediction	In-Sample WTP prediction and Kriging	Individual WTP and Kriging
simple model sufficient	Simple model sufficient	Requires model with unobserved heterogeneity
Neglects unobserved preference heterogeneity and spatial patterns	Neglects unobserved heterogeneity but includes spatial patterns	Includes unobserved heterogeneity and spatial patterns
Uncertainty comes from one source	Uncertainty comes from 2 sources	Uncertainty comes from 3 sources

Variable	Obs	Mean	Std. Dev.	Min	Max
Forest_Share	1,233	15.92	13.35	0	80.04
WTP_Ind	1,233	6.71	5.48	-10.56	23.465
WTP_pred	1,233	6.70	2.66	-6.11	9.88
WTP_diff	1,233	.0078	4.93	-16.00	17.23

Correlation between WTP_Ind and WTP_pred (and forestshare): 0.44

- Obviously:
 - Variation in individual WTP much higher than in predictions
 - Predicted values correspond 1:1 to forest share
- Not so obviously:
 - Correlation between individual WTP and predicted WTP rather small (0.44)
 - But: Mean differences nearly zero
- Which ones to use for spatial analysis?

- So far, we only looked at in-sample predictions
- How to use the estimated values to map spatially different WTP
 - Option A: Use WTP function to predict for each spatial unit
 - 250x250m raster
 - County level
 - Option B: Krige predicted (in-sample) WTP values
 - Option C: Krige individual WTP values

Kriging vs. Prediction: Maps

- Overall, similarities are observable
 - E.g., WTP in North West Germany are similar in all three maps
 - But in some regions large differences
- Non-spatial prediction gives more extreme values
- Prediction can better locate hot and cold spots
- Differences also between the two kriging maps

- Problem: We have no idea on true spatial patterns
 - No reference (true values) to compare it with
- Possible strategies:
 - Estimate model only for (geographically stratified) subsample and predict for out-of-sample observations. Then compare methods
 - Monte-Carlo simulations: Simulate WTP on a 10x10km raster, sample 1000 observations, estimate a model, then try the different approaches and compare results with true values
 - Results will depend on assumptions of simulation.

- Broch SW, Strange N, Jacobsen JB, Wilson KA (2013) Farmers' willingness to provide ecosystem services and effects of their spatial distribution. Ecological Economics 92:78–86.
- Campbell D, Hutchinson WG, Scarpa R (2009) Using Choice Experiments to Explore the Spatial Distribution of Willingness to Pay for Rural Landscape Improvements. Environment and Planning - Part A 41:97–111.
- Czajkowski M, Budziński W, Campbell D, et al (2015) Spatial heterogeneity of willingness to pay for forest management.
- Johnston RJ, Ramachandran M (2014) Modeling Spatial Patchiness and Hot Spots in Stated Preference Willingness to Pay. Environ Resource Econ 59:363–387.
- Johnston RJ, Jarvis D, Wallmo K, Lew DK (2015) Multiscale Spatial Pattern in Nonuse Willingness to Pay: Applications to Threatened and Endangered Marine Species. Land Economics 91:739–761.
- Meyerhoff J (2013) Do turbines in the vicinity of respondents' residences influence choices among programmes for future wind power generation? Journal of Choice Modelling 7:58–71.
- Rolfe J, Windle J, Bennett J. Benefit Transfer: Insights from Choice Experiments. In: Johnston RJ, Rolfe J, Rosenberger RS, Brouwer R, editors. Benefit Transfer of Environmental and Resource Values, Springer Netherlands; 2015, p. 191–208.
- Schaafsma M, Brouwer R, Gilbert A, et al (2013) Estimation of Distance-Decay Functions to Account for Substitution and Spatial Heterogeneity in Stated Preference Research. Land Economics 89:514–537.
- van Zanten BT, Verburg PH, Koetse MJ, van Beukering PJH (2014) Preferences for European agrarian landscapes: A meta-analysis of case studies. Landscape and Urban Planning 132:89–101.

Thank you for your time and attention

Julian Sagebiel

IÖW – Institute for Ecological Economy Research, Berlin julian.sagebiel@ioew.de Klaus Glenk

SRUC, Edinburgh klaus.glenk@sruc.ac.uk

Robert Johnston

Clark University, Worcester rjohnston@clarku.edu

Jürgen Meyerhoff

Technical University Berlin juergen.meyerhoff@tu-berlin.de

- Can be any variable that is differentiated in space
 - Current endowment of attributes
 - Demographics, political setting
 - Landscape features
- Incorporation in DCE as interaction terms
 - Explain variance in MWTP (observed preference heterogeneity)
 - Predict MWTP on different spatial units
- Idea: Make use of spatial variables to predict MWTP for different spatial units (e.g. counties)

- Main Idea: Closer things are more related than distant things
- Various methods such as Kriging, inverse distance weighting, Spline
- Kriging: predict the value of a function at a given point by computing a weighted average of the known values of the function in the neighborhood of the point (Wikipedia).

Marginal WTP Function

17

Individual WTP vs. Predictions: Histograms

Discussion: Prediction

Advantages

- Straightforward estimation
- Prediction on arbitrary scales
- Inclusion of several exogenous variables possible
- Flexible utility functions possible
- No need for individual estimates

Limitations

- GIS Data requirement
- Unobserved
 heterogeneity/spatial
 autocorrelation
- Accuracy?
- Multicollinearity in spatial variables

Discussion: Kriging

Advantages

- Incorporates unobserved heterogeneity
- No further GIS information required
- Can but does not have to rely on individual WTP

Limitations

- Does not account for landscape variables
- Does not account for population density (only ex post)
- At least two estimations
- Assumes individual WTP as observations

Introduction: Spatial Willingness to Pay

- MWTP varies in space
 - People have different (intrinsic) preferences
 - People have different reference points
- Spatial factors to explain preference heterogeneity
- Several attempts to integrate space in MWTP estimates
- Important to design policies

- Present an approach to attain spatially different willingness to pay (MWTP) from discrete choice experiments
- Exemplify it with data from a discrete choice experiment (DCE) on local land use changes

- March/April 2013
- 1,322 randomly sampled respondents all over Germany
- Online questionnaire of about 30 minutes
 - Socio-demographics
 - Land use and climate change: attitudes, perceptions, knowledge
 - Recreational activities
- Each respondent revealed his place of residence on a map (WGS84)

Spatial Distribution of Sample and Landscape Categories

Source: Federal Agency for Nature Conservation

- <u>Local</u> land use changes
 - Within 15 kilometer radius of place of residence
 - Each respondent has a unique status quo situation
- 27 choice sets in three blocks
 - D-efficient design for multinomial logit model
 - Minimize MWTP standard error
- Three alternatives of which one is status quo ("as today")
- Six land-use related attributes

Attribute	Levels
Share of forest (ShFor)	As today, decrease by 10%, increase by 10%
Field size (FiSiz)	As today, half the size, twice the size
Biodiversity in agrarian Iandscapes (Biodiv)	As today, slight increase (85 points), considerable increase (105 points)
Share of maize on arable land (ShMai)	As today, max. 30% of fields, max. 70% of fields
Share of grassland on agricultural fields (ShGra)	As today, 25%, 50%
Annual contribution to fund (Price)	0, 10, 25, 50, 80, 110, 160 €

<u>+</u>

If only the following options were available for the future development of the landscape within a <u>radius of up to 15 kilometers around your place of residence</u>, which one would you choose? If you live in a large city, please consider the surrounding area of the city.

		Landscape A	Landscape B	Landscape C
	Share of forest	As today Increase by 10%		As today
	Field size	As today	Twice the size	As today
	Biodiversity on agricultural fields	Strong increase	As today	As today
	Share of maize on arable land	max. 70% of fields	max. 30% of fields	As today
	Share of grassland on agricultural fields	25%	25%	As today
	Financial contribution to fund per year	110€	80€	0€
I CHOOSE 🛛				

i | ö | w

27

Α	Data preparation	a) Status quo of share of attributes b) Incorporate status quo in attributes	
Β	Model estimation	 a) Specify utility function b) Estimate the utility parameters c) Derive MWTP function 	
С	Prediction and mapping	 a) Predict MWTP depending on spatial variables b) Multiply the MWTP with the population c) Map the MWTP values d) Aggregate on administrative units 	

Step A: Data Preparation a) Calculate status quo

- Calculate within the 15 km radius the status quo of all relevant attributes
 - Any GIS software (ArcGIS, QGIS)
 - Requires land use data
- Elicit the required shares
 - Share of forest
 - Share of maize
 - Share of grassland

 Incorporate status quo of respondent e.g. by substituting attribute level "as today" with the status quo situation

Attribute level	Original Coding		SQ Modification	
Status quo is	25%	85%	25%	85%
As today	0	0	25	85
10% less	1	1	15	75
10% more	2	2	35	95

- Random utility model
 - $U = V + \epsilon = f(X) + \epsilon$
 - $-V = f(X) = \sum_{1}^{N} \beta_n X_n$
- For forest share, a quadratic (inverse U-shaped) function may be adequate
 - $-V = \beta_{k1}X_k + \beta_{k2}X_k^2 + \sum_n^N \beta_n X_n$
 - Utility increases with diminishing rates...
 - ...up to an optimum...
 - ...and decreases with increasing rates

- The price attribute is interacted with disposable income of respondent's county
 - As a further source of spatial preference heterogeneity
 - Indicator on infrastructural development
- Many other spatial variables could be used
- Problems with multicollinearity

- Attributes share of forest (ShFor), share of maize on arable land (ShMai) and share of grassland on agricultural fields (ShGra) entered utility quadratically
- Estimation with Conditional Logit without DisInc Interaction
- And with Random Parameters Logit with DisInc Interaction
 - Alternative specific constant and all attributes normally distributed
 - Price attribute and interaction fixed

Merge land use data with population:

- Requires high resolution data on population
- Here 250x250m raster data
- Similar to step A, calculate for each raster cell the share of forest

Step C: Prediction and Mapping a) Predict MWTP depending on spatial variables

- For each raster cell ($k = 1 \dots K$), substitute the forest share and disposable income into MWTP function
- $MWTP_k$ (ShFor, DisInc) = $-\frac{\beta_1 + 2\beta_2 ShFor_k}{\beta_{price} + \beta_{DisInc^*} DisInc_k}$
- Examples:
- $MWTP_{ShFor}$ (7.5) = -(.125 + 2 * -.00125 * 7.5)/-.0124=8.65€
- $MWTP_{ShFor}$ (95) = -(.125 + 2 * -.00125 * 95)/-.0124=-9.07€

Step C: Prediction and Mapping c) Map the MWTP values

- Map the MWTP values
- Multiply the MWTP with the number of inhabitants and create a map with these aggregate values
- Map further statistics, e.g. the standard deviation of MWTP in each county

- Sometimes, MWTP between administrative regions is relevant
 - To distribute funds
 - To identify regions that require more support
 - To inform local policy makers
- German counties as an example

- For each county, calculate the distribution of forest share across the population
- For simplicity, we used a discrete distribution
 - 7.5 for 5%-10%, 15 for 10-20% etc.

- For each county calculate the average MWTP per person
 - Weighted average
 - $-A\nu.MWTP = \sum fr_i * MWTP_i$
- Example Ditmarschen (DisInc=19833)
 - -Av.MWTP = 0.73 * 9.77 + 0.25 * 8.74 + 0.012 * 7.2 = 9.48 Euro
- Example Goslar (DisInc=19016)
 - Av. MWTP = 0.55 Euro

Step C: Prediction and Mapping d) Aggregate on administrative units

Share of forest and MWTP

Sources: Federal Statistical Office, Kleinräumige Einwohnerdisaggregation (small-scale Inhabitantdisaggregation) © BBSR Bonn 2013, Base: LOCAL © Nexiga GmbH 2013, ATKIS Basis DLM © DKC/COOD ANIA DE 2012

1:8.333.598

400 500 km 200 300

- In general, higher MWTP where forest share is low
- But: Population density is very important
- MWTP hotspots are in the north of Germany
- Eastern Midlands are already equipped with large forests

Estimation Results: Conditional Logit

Observations	33291
Pseudo R ²	0.103
AIC	21890.5
BIC	21983.1
Chi Squared	2514.1
Lok-Lik. (Null)	-12191.3
Log-Lik.	-10934.3

Estimation Results: Random Parameters Logit

AIC

BIC

- Land use conflicts and need for land use changes
 - Interaction with climate change
 - New political perspective on nature conservation
 - E.g. Convention on Biological Diversity, European Water Framework Directive
- Sustainable land use requires incorporation of all costs and benefits
 - On farm level
 - Climate effects
 - Societal effects e.g. landscape, aesthetic value

Introduction: Discrete choice experiments

- DCEs to inform policy decisions
 - Several studies on land use conducted in Europe (van Zanten et al. 2014)
 - Can be integrated into cost-benefit analysis

- Estimate the parameters of the utility function with discrete choice model
- Any discrete choice model can be used
 - Conditional logit, mixed logit, latent class logit
 - $-\Pr(j) = \frac{\exp(V_j)}{\sum \exp(V_i)}$

i | Ö | W

54