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Abstract

In this paper we compare a number of common strategies for constructing discrete choice experiments. Two of the strategies,

including one based on theoretical constructions for optimal discrete choice experiments, produce designs that are better than those

that come about from random grouping and from using the LMA construction. A simple account of this theoretical construction is

given.
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1. Introduction and motivation

A discrete choice experiment (DCE) consists of

several choice sets, each containing two or more

options (sometimes called alternatives). Participants

are shown the choice sets in turn and are asked which

option they prefer. Each option is described by a set of

attributes and each attribute can take one of several

levels. DCEs are used in marketing to estimate the

effect of the attributes on the battractivenessQ of the

product under consideration. How well a DCE does

this depends in part on which options are used in the

choice experiment and how these options are grouped

into choice sets. Partly for convenience and partly to try

to keep the complexity of choosing between the options

in each of the choice sets as equal as possible, we are

going to assume that all of the choice sets are of the

same size.
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We begin by considering an example in which there

are five attributes of interest used to describe economy

class, long-haul flights of at least 4 h flying time. These

attributes, together with the corresponding levels, are as

follows:

A1: Return airfare ($350, $450, $550, $650)

A2: Total travel time, including stops (4, 5, 6, 7 h)

A3: Food/beverage (none, beverages only, beve-

rages+cold snack, beverages+hot meal)

A4: Audio/Video entertainment (none, audio only,

audio+short video clips, audio+movie)

A5: Type of airplane (Boeing 737, Boeing 757,

Boeing 767, Boeing 777)

The levels of attributes are usually coded and in this

paper we use 0, 1, 2 and 3 as the coded levels for the 4

levels for each attribute. If we investigate these five

attributes using choice sets of size 2 (a paired compar-

ison design) then there are five design strategies that

have been routinely adopted in the past. Design strate-

gies typically use an orthogonal main effects plan
eting 22 (2005) 459–470



able 2

trategy 1 choice sets

air # Option 1 Option 2

Profile # A1 A2 A3 A4 A5 Profile # A1 A2 A3 A4 A5

P1 0 0 0 0 0 P13 3 0 3 1 2

P2 0 1 1 1 1 P10 2 1 3 2 0

P3 0 2 2 2 2 P11 2 2 0 1 3

P4 0 3 3 3 3 P8 1 3 2 1 0

P5 1 0 1 2 3 P9 2 0 2 3 1

P6 1 1 0 3 2 P14 3 1 2 0 3

P7 1 2 3 0 1 P15 3 2 1 3 0

P8 2 3 1 0 2 P16 3 3 0 2 1
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(OMEP), which allow the uncorrelated estimation of all

main effects under the assumption that all interactions

are negligible (see Addelman, 1962). Such designs may

be obtained from Hahn and Shapiro (1966), from soft-

ware packages such as SPEED (Bradley, 1991) or Ortho-

plan (SPSS, 1989) or from the tables of orthogonal arrays

(i.e., OMEPs) at Neil Sloane’s website (Sloane, 2003)

amongst other options. Below we consider several de-

sign strategies commonly found in the published litera-

ture on DCEs in marketing, transportation and applied

economics. Four of the strategies discussed below in-

volve finding an OMEP for five attributes each with four

levels and the fifth requires finding such a design for 10

attributes each with four levels.

The orthogonal main effects design for five 4-level

attributes shown in Table 1 has 16 level combinations

(or profiles) and was obtained from Sloane’s website

(oa.16.5.4.2).

2. Strategy 1

The first design strategy is to take one orthogonal

main effects design for five 4-level attributes and ran-

domly pair the profiles to give the choice sets. One such

design is given in Table 2. Thus the first choice set,

using the attributes and uncoded levels, becomes

{($350, 4 h, no food or drink, no entertainment, Boeing

737), ($650, 4 h, beverage and hot meal, audio only,

Boeing 767)}.

Observe, however, that this pairing has resulted in

the second attribute having the same level in all pairs

and so no information about the effects of the second

attribute is available. Also note the attribute levels are

not balanced within each option (e.g., level 0 of the first
Table 1

An OMEP for five 4-level attributes

Profile # A1 A2 A3 A4 A5

P1 0 0 0 0 0

P2 0 1 1 1 1

P3 0 2 2 2 2

P4 0 3 3 3 3

P5 1 0 1 2 3

P6 1 1 0 3 2

P7 1 2 3 0 1

P8 1 3 2 1 0

P9 2 0 2 3 1

P10 2 1 3 2 0

P11 2 2 0 1 3

P12 2 3 1 0 2

P13 3 0 3 1 2

P14 3 1 2 0 3

P15 3 2 1 3 0

P16 3 3 0 2 1
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attribute only appears in the first option). This is only a

problem if order of presentation matters.

3. Strategy 2

The second design strategy is similar to the first but

uses two different OMEPs, one to represent the profiles

that appear as the first option in the choice sets and one

to represent the profiles that appear as the second option

in the choice sets. One such design is shown in Table 3.

Note that each level of each attribute appears equally

often in each option but it does not stop the possibility

that all pairs may have the same level of one, or more,

attributes. This problem is partially overcome in the

next two construction techniques.

4. Strategy 3

This strategy takes the profiles from an OMEP and

pairs them manually in such a way that the pairs satisfy

the minimal overlap property from Huber and Zwerina
able 3

trategy 2 choice sets

air # Option 1 Option 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

0 0 0 0 0 1 3 2 0 2

0 1 1 1 1 2 1 3 0 3

0 2 2 2 2 1 2 0 3 3

0 3 3 3 3 0 1 2 3 1

1 0 1 2 3 0 0 0 0 0

1 1 0 3 2 3 1 0 2 2

1 2 3 0 1 3 3 3 3 0

1 3 2 1 0 1 1 1 1 0

2 0 2 3 1 0 2 3 1 2

0 2 1 3 2 0 3 2 1 0 1

1 2 2 0 1 3 2 3 0 1 1

2 2 3 1 0 2 3 0 2 1 3

3 3 0 3 1 2 0 3 1 2 3

4 3 1 2 0 3 2 2 2 2 0

5 3 2 1 3 0 2 0 1 3 2

6 3 3 0 2 1 1 0 3 2 1
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Table 4

Strategy 3 choice sets

Pair # Option 1 Option 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 0 0 0 0 0 3 0 3 1 2

2 0 1 1 1 1 0 2 2 2 2

3 0 2 2 2 2 2 3 1 0 2

4 0 3 3 3 3 1 0 1 2 3

5 1 0 1 2 3 0 1 1 1 1

6 1 1 0 3 2 3 2 1 3 0

7 1 2 3 0 1 1 3 2 1 0

8 1 3 2 1 0 2 0 2 3 1

9 2 0 2 3 1 2 1 3 2 0

10 2 1 3 2 0 0 3 3 3 3

11 2 2 0 1 3 1 1 0 3 2

12 2 3 1 0 2 3 1 2 0 3

13 3 0 3 1 2 2 2 0 1 3

14 3 1 2 0 3 1 2 3 0 1

15 3 2 1 3 0 3 3 0 2 1

16 3 3 0 2 1 0 0 0 0 0

Table 5

Strategy 5 choice sets

Pair # Option 1 Option 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 3 1 0 2 0 1 3 2 0 3

2 2 0 1 3 3 1 3 2 0 0

3 3 0 2 1 1 1 2 0 3 2

4 2 2 2 2 3 3 3 3 3 2

5 1 0 3 2 1 2 3 0 1 0

6 1 2 0 3 1 0 3 1 2 2

7 0 1 2 3 0 3 2 1 0 1

8 1 1 1 1 3 0 0 0 0 2

9 2 3 0 1 1 3 2 1 0 0

10 0 2 3 1 3 2 0 1 3 0

11 0 3 1 2 1 2 1 3 0 2

12 0 1 2 3 1 1 0 3 2 0

13 3 3 3 3 3 1 1 1 1 2

14 0 0 0 0 3 2 2 2 2 2

15 2 1 3 0 1 3 0 2 1 2

16 3 1 0 2 3 0 2 3 1 0
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(1996), or as close to it as is possible. In effect, this

means that for each attribute there should be the max-

imum number of different levels in the choice set. Each

level appears either 0 or 1 times in each pair and, over

the whole choice experiment, each option displays the

possible levels of each attribute equally often. One set

of pairs that results from this approach is given below.

Unfortunately, for this example, it is not possible for

any pairs to have no repeated levels. To see this,

consider the profile 00000. When this profile is paired

with any of the other profiles, one attribute will have a

repeated level because every other profile contains one

0. However it is possible to change the attribute that is

repeated from choice set to choice set. Table 4 contains

a design constructed with this strategy.

5. Strategy 4

The fourth strategy requires an OMEP for ten 4-level

attributes. The smallest such design has 64 level com-

binations. For each level combination in the OMEP the

first five attributes are used to represent the profiles of

the first option and the final five attributes are used to

represent the profiles of the second option. So there are

64 total pairs in the experiment. This strategy is some-

times called an LMA approach (see Louviere, Hensher,

& Swait, 2000). As this design is large it is in the

Appendix (Table A1).

6. Strategy 5

This strategy uses a software package like SAS (see

Kuhfeld, 2004) to generate a starting OMEP and then
construct choice sets using a search algorithm. The

bgoodnessQ of the design (efficiency) is given, but

there is no indication if a design is the best (optimal)

design. The user must nominate the number of profiles

in the candidate set from which the search algorithm

selects profiles for the choice sets. We tried a number of

different candidate sets, and used the one with the

highest efficiency (1.587), as calculated by SAS (see

Table 5).

The first four design construction strategies have the

disadvantage that you do not know how good the

resulting design will be. Furthermore, it is possible

for the effects of interest to be inestimable, and in the

case of the LMA approach the number of choice sets

required typically is much larger than needed just to

estimate the effects of interest. While Strategy 5 does

give an efficiency for its designs, one does not know if

a better design is available. We discuss the statistical

properties of designs constructed from the five strate-

gies in the section entitled bComparison of strategiesQ.
A recent series of papers (Burgess & Street, 2003,

2005; Street, Bunch, & Moore, 2001; Street & Burgess,

2004) derive proofs for design strategies that allow one

to obtain DCEs with good statistical properties for any

choice set size and for attributes with any number of

levels. The purpose of the present paper is to provide a

quick and easy way for academics and practitioners to

make use of these recent theoretical results. In particu-

lar we describe a construction technique that always

gives an optimal or near-optimal design for the estima-

tion of main effects, and gives near-optimal designs for

the estimation of main effects plus two-factor interac-

tion effects. In addition the efficiency of any proposed
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design can be calculated using the results below, thus

allowing any specific designs to be compared.

The basic idea of the construction technique is sim-

ple: start with an OMEP to represent the profiles in the

first option in the choice sets. Choose some systematic

set of level changes to get from the profiles in the first

option in the choice sets to the profiles in the second

option in the choice sets, and then choose another

systematic set of changes to get from the profiles in

the first option to the profiles in the third option, and so

on. The benefit of this approach is that the nature of the

systematic changes required to make the resulting

choice sets optimal has been determined for the esti-

mation of main effects. Bunch, Louviere, and Anderson

(1996) introduced cyclic or shifted designs, but their

designs only work well for estimating main effects, and

the numbers of levels for all the attributes must be at

least equal to the size of the choice sets. Systematic

changes to get near-optimal sets for estimating main

effects plus two-factor interaction effects also have

been determined. These systematic changes are dis-

cussed below.

7. The information matrix and statistical efficiency

In general, each profile in each option in a choice set

is described by k attributes and each choice set contains

m options. We assume that the qth attribute has lq
levels, represented by 0, 1, . . ., lq�1 and that attributes

may have different numbers of levels (i.e., a design can

be asymmetric).

We discuss experiments that are consistent with the

multinomial logit model (MNL), where the results

from a DCE are to be used to estimate the main effects

or the main effects plus two-factor interactions. A

common way to compare designs is by using the

generalized variance of the parameter estimates;

designs for which the generalized variance is as small

as possible are required. Since the variance–covariance

matrix of the parameter estimates is the inverse of the

Fisher information matrix, optimal designs will, when

using the D-optimality criterion, have the maximum

determinant of the information matrix. In El Helbawy

and Bradley (1978) the information matrix is defined to

be C =BKBV, where B is the matrix of contrasts for the

effects to be estimated (i.e. main effects or main effects

plus two-factor interactions), and K is the matrix of

second derivatives of the likelihood function. Under

the null hypothesis of no differences between the

effects of the levels of each attribute, it turns out that

K contains the proportions of choice sets in which

pairs of profiles appear together (for details see, for
instance, Burgess & Street, 2005). The next example

illustrates these calculations.

Example 1. In order to illustrate the calculations,

suppose that there are only two attributes from the

example in the previous section, one with two levels

and the other with three levels.

A1: Return airfare ($350, $650, coded as 0,1)

A2: Total travel time, including stops (4, 5, 6 h,

coded as 0,1,2)

Therefore l1=2 and l2=3 and the possible profiles are

00, 01, 02, 10, 11, 12. The entries in K can be evaluated

by counting the occurrences of pairs of profiles (see El

Helbawy & Bradley, 1978) and dividing by m2N where

N is the number of choice sets. The diagonal entries are

chosen so that the row and column sums of K are 0. To

evaluate K label the rows and columns of K by the

profiles. Thus, K˙ is a 6�6 matrix with rows and

columns labeled by 00, 01, 02, 10, 11, 12. Let each

choice set have three options, so m =3; and let the

choice sets in the experiment be (00, 11, 02) and (10,

02, 12). Then using the profiles in the order given, the

first row of K is 1/18 (2, 0, �1, 0, �1, 0), second row

is 1/18 (0, 0, 0, 0, 0, 0) (since 01 occurs in neither of the

choice sets) and so on. Thus, we get the matrix

K ¼ 1

18

2 0 � 1 0 � 1 0

0 0 0 0 0 0

� 1 0 4 � 1 � 1 � 1

0 0 � 1 2 0 � 1

� 1 0 � 1 0 1 0

0 0 � 1 � 1 0 2

2
6666664

3
7777775
:

The matrix B is a matrix of contrasts for the effects of

interest. If the main effect of attribute q, which has lq
levels, is of interest then B will contain lq�1 rows that

correspond to lq�1 independent contrasts (one for each

degree of freedom) associated with the attribute. Any set

of lq�1 independent contrasts will result in the same

covariance matrix of the parameter estimates, and hence

in the same generalized variance (determinant of the

covariance matrix of the parameter estimates). For each

attribute we find an appropriate set of contrasts. We then

use these contrasts as the rows of the matrix B and

calculate the information matrix C =BKBV.
Example 1 (continued). Suppose that the main

effects of each attribute are of interest. Then, since

l1=2, there will be one row in B for the one contrast

for the main effect of the first attribute and, since l2=3,

there will be two rows in B for the two contrasts for the

main effect of the second attribute. The entries in B for

the main effect for the first attribute are �1, corres-
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ponding to the level 0; and 1, which corresponds to level

1. There will be two rows for the second attribute—in the

first row, which is the linear contrast, attribute level 0

corresponds to �1 in the contrast, attribute level 1

corresponds to 0 in the contrast and attribute level 2

corresponds to 1 in the contrast. In the second row,

which is the quadratic contrast, attribute level 0 corre-

sponds to�1, attribute level 1 to 2 and attribute level 2 to

�1. The only thing left to do is to normalize the con-

trasts, which means dividing the entries in each row by

the square root of the sum of the squares in each row. The

entries in the first row are divided by M6, those in the

second row byM4 and those in the third row byM12, so

that BBV= I. Thus we get

B ¼

�1ffiffi
6

p �1ffiffi
6

p �1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p

�1
2

0 1
2

�1
2

0 1
2

�1ffiffiffiffi
12

p 2ffiffiffiffi
12

p �1ffiffiffiffi
12

p �1ffiffiffiffi
12

p 2ffiffiffiffi
12

p �1ffiffiffiffi
12

p

2
664

3
775

and

C ¼ BKBV ¼

4
27

�1

9
ffiffi
6

p �1

9
ffiffi
2

p

�1

9
ffiffi
6

p 7
36

0

�1

9
ffiffi
2

p 0 1
12

0
BB@

1
CCA:

Note that since the C matrix is not diagonal, the esti-

mates of the main effects will be correlated although

the two components of the attribute with three levels

are independent.

Once the C matrix for a DCE has been calculated,

the statistical efficiency of the design can also be

calculated if the C matrix of the optimal design is

known. In general the D-efficiency of any design is

given by [det(C)/det(Coptimal)]
1/p, where p is the num-

ber of parameters that have to be estimated in the

model. For designs that estimate main effects,

p =Ri(li�1). For designs that estimate both main

effects and two factor interactions, p =Ri(li�1)+

RiRj,ibj(li�1)(lj�1).

An optimal design has an efficiency of 100%. A

design is nearly optimal if the efficiency is high but

there is no formal definition of this phrase. To construct

optimal or nearly optimal choice sets it is desirable to

start with an orthogonal design so that the estimates of

the main effects or the main effects plus two-factor

interactions from the choice experiment are most likely

to be uncorrelated.

8. Designs for estimating main effects

Burgess and Street (2005) provide an upper bound

for det(C) for estimating main effects for any choice set
size with any number of attributes each having any

number of levels. The maximum value of the determi-

nant of C is

det Coptimal

� �
¼

Yk
q¼1ð 2Sq

m2 lq � 1
� � Yk

i¼1;ip q

liÞ
lq�1

ð1Þ

where

Sq ¼
m2 � 1ð Þ=4 lq ¼ 2;m odd;
m2=4 lq ¼ 2;m even;
m2 � lqx

2 þ 2xyþ y
� �� �

=2 2blqVm;
m m� 1ð Þ=2 lqzm

8>><
>>:

ð2Þ

and positive integers x and y satisfy the equation

m = lqx +y for 0Vy b lq. The value Sq is the largest

number of pairs of profiles that can have different levels

for attribute q in a choice set. In other words Sq is the

maximum number of differences in the levels of attri-

bute q in each choice set.

Example 1 (continued). For the two choice sets

given before, det(C)=1/972. Now in this example

m =3 and since l1=2, S1= (m
2�1)/4=2, and since

l2=3, S2=m(m�1)/2=3. So the maximum value of

det(C) is det(Coptimal)= (2�2)/(9�1�3)� ((2�3)/

(9�2�2))2=1/243 and p =3. Hence the efficiency of

the two choice sets is ((1/972)/(1/243))1/3�100=63%.

These choice sets are not optimal because the second

choice set (10, 02, 12) does not have the maximum

possible number of differences in the levels of the

second attribute. Now consider the choice sets (00,

11, 02) and (10, 01, 12). In both of the choice sets

the number of level differences for the first attribute is

2 and the number of level differences for the second

attribute is 3. The C matrix is diagonal so the estimates

of the main effects will be uncorrelated and this design

is 100% efficient.

So how do we go about finding choice sets that are

optimal? One way that works is to use an OMEP to

make the profiles in the first option of the choice sets,

and then make systematic level changes so that as many

pairs of profiles as possible have different levels for

each attribute.

For binary attributes to be presented in choice sets of

size two (pairs), we need to choose an OMEP to make

the profiles in the first option, and interchange the 0’s

and 1’s to make the profiles for the second option. This

interchange process is known as using the foldover of

the profiles in the first option to make the profiles in the

second option. The resulting pairs are optimal and are

shown in Table 6 for an example with 5 attributes.



Table 6

Optimal pairs for estimating main effects for 5 binary attributes

Set # Option 1 Option 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 0 0 0 0 0 1 1 1 1 1

2 1 0 0 1 1 0 1 1 0 0

3 0 1 0 1 0 1 0 1 0 1

4 0 0 1 0 1 1 1 0 1 0

5 1 1 0 0 1 0 0 1 1 0

6 1 0 1 1 0 0 1 0 0 1

7 0 1 1 1 1 1 0 0 0 0

8 1 1 1 0 0 0 0 0 1 1
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For binary attributes to be presented in choice sets of

size 3 (triples), we need to have Sq =2 to get an optimal

design; hence we need to systematically change the

levels so that either 0 or 1 appears twice in each choice

set, with the other level appearing once in each set. For

example, for a DCE with 5 attributes the design in

Table 7 is optimal and it is clear that Sq =2 for all of

the attributes. For instance in the first choice set (00000,

11100, 00011) it can be seen that for each attribute the

levels differ twice when comparing each pair of

options. For the first attribute the level is different

when comparing options 1 and 2; it is the same

when comparing options 1 and 3; and the levels differ

when comparing options 2 and 3. In Table 7 the

profiles in the first option form an OMEP for 5 binary

attributes. The profiles in the second option have been

obtained by interchanging 1’s and 0’s in the first three

attributes and the profiles in the third option have been

obtained by interchanging 0’s and 1’s in the fourth and

fifth attributes.

These systematic level changes are equivalent to

adding a generator to the profiles in Option 1 to obtain

the profiles in Option 2, and adding another generator

to the profiles in Option 1 to obtain the profiles in

Option 3. The addition is performed in modulo arith-

metic according to the number of levels for a particular
Table 7

Optimal triples for estimating main effects for 5 binary attributes

Set # Option 1 Option 2 Option 3

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1

2 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0

3 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1

4 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0

5 1 1 0 0 1 0 0 1 0 1 1 1 0 1 0

6 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1

7 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0

8 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
attribute. The generator 11100 is added (modulo 2) to

the profiles in Option 1: 0000+11100u11100,

10011+11100u01111, 01010+11100u10110, 00101+

11100u11001, and so on, to obtain the profiles in

Option 2. Recall that 0+0u0, 0+1u1, 1+0u1 and

1+1u0 in modulo 2 arithmetic. Similarly the generator

00011 is added (modulo 2) to each of the profiles in

Option 1 to obtain the profiles in Option 3.

If an attribute has more than two levels, the process

is similar but more complicated. Suppose all attributes

have three levels. Then lq =3 and hence Sq =m(m�1)/

2=1 if m =2, Sq =m(m�1)/2=3 if m =3, and

Sq=(m
2� (3x2+2xy+y))/2 for all other values of m.

So if there are 4 attributes each with 3 levels, and pairs

are to be used to estimate the main effects, then the

systematic level changes that result from adding 1 or 2

modulo 3 to all the levels in each attribute give an

optimal design. (Recall that 1+1u2 (mod 3),

1+2u2+1u0 (mod 3) and 2+2u1 (mod 3).) The

design in Table 8 was obtained by using an OMEP to

make the profiles in the first option, and then adding 1

(mod 3) to the levels in the first and third attributes and

adding 2 (mod 3) to the levels in the second and fourth

attributes to get the profiles in the second option. All

attribute levels could have been changed by adding 1

(mod 3) or all by adding 2 (mod 3) or any group by

adding 1 (mod 3) and the remaining attributes could be

changed by adding 2 (mod 3) and the resulting set of

pairs would be optimal for estimating main effects.

Similarly optimal triples can be obtained by changing

levels in an attribute by adding 1 (mod 3) for the second

option and adding 2 (mod 3) for the profiles in the third

option or vice versa. These systematic level changes are

equivalent to adding the generator 1212, using modulo

3 arithmetic, to the OMEP to obtain the profiles in

Option 2.

Now consider 4 attributes, each with 3 levels, for

choice sets of size 4 (quadruples). We need to calcu-
able 8

ptimal pairs for estimating main effects for 4 ternary attributes

et # Option 1 Option 2

A1 A2 A3 A4 A1 A2 A3 A4

0 0 0 0 1 2 1 2

0 1 1 2 1 0 2 1

0 2 2 1 1 1 0 0

1 0 1 1 2 2 2 0

1 1 2 0 2 0 0 2

1 2 0 2 2 1 1 1

2 0 2 2 0 2 0 1

2 1 0 1 0 0 1 0

2 2 1 0 0 1 2 2
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Table 9

Optimal design for two 2-level attributes and two 4-level attributes

Set # Option 1 Option 2 Option 3

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

1 0 0 0 0 1 1 1 1 0 1 2 2

2 0 1 0 2 1 0 1 3 0 0 2 0

3 1 0 2 0 0 1 3 1 1 1 0 2

4 1 1 2 2 0 0 3 3 1 0 0 0

5 1 1 0 3 0 0 1 0 1 0 2 1

6 1 0 0 1 0 1 1 2 1 1 2 3

7 0 1 2 3 1 0 3 0 0 0 0 1

8 0 0 2 1 1 1 3 2 0 1 0 3

9 1 1 3 0 0 0 0 1 1 0 1 2

10 1 0 3 2 0 1 0 3 1 1 1 0

11 0 1 1 0 1 0 2 1 0 0 3 2

12 0 0 1 2 1 1 2 3 0 1 3 0

13 0 0 3 3 1 1 0 0 0 1 1 1

14 0 1 3 1 1 0 0 2 0 0 1 3

15 1 0 1 3 0 1 2 0 1 1 3 1

16 1 1 1 1 0 0 2 2 1 0 3 3
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late Sq =(m
2� (3x2+2xy +y))/2 where m =3x +y and

0Vy b3. Thus 4=3�1+1, so x=y=1. Hence Sq =

(42� (3�12+2�1�1+1))/2=5. This means that

when considering the six possible pairs of profiles

in a choice set, the maximum number of level

changes for one attribute is 5. One such choice set

is (0000, 1212, 1021, 2101). Note the levels of

attribute 1 in the six possible pairs of profiles in

the choice set: 0 and 1, 0 and 1, 0 and 2, 1 and

1, 1 and 2, 1 and 2. In five of the pairs the levels of

attribute 1 differ. One can construct the choice sets

by adding generators 1212, 1021 and 2101, using

modulo 3 arithmetic, to the profiles in Option 1 in

Table 8 to obtain the profiles in Options 2, 3 and 4,

respectively. The C matrix for this design is diagonal

and the design is 100% efficient.

The choice of which systematic level changes to

make, and the need to calculate the efficiency of the

resulting design, becomes more critical as the number

of levels increases relative to the choice set size. For

example, consider finding optimal choice sets of size 3

to estimate the main effects of four asymmetric attri-

butes, two with 2 levels and two with 4 levels. We

know that S1=S2=2 and S3=S4=6. For each attribute

in each choice set there are three possible pairs of

profiles, so we need to systematically change the

levels of the attributes so that there are 2 differences

in the levels of the first two attributes and 6 differ-

ences in the levels of the last two attributes. One way

to obtain an optimal design is to change the levels of

the first and second attributes by adding 1 (mod 2),

and changing the levels of the third and fourth attri-

butes by adding 1 (mod 4) to get the profiles in the

second option in each choice set. To obtain the pro-

files in the third option in the choice sets we could

add 0 to the first attribute, 1 (mod 2) to the second

attribute and 2 (mod 4) to the third and fourth attri-

butes. The design is shown in Table 9 and is 100%

efficient.

Caution should be exercised when constructing pairs

when the number levels of a particular attribute is not a

prime number. One can make systematic level changes

so that the number of level changes is equal to Sq, but

one may be unable to estimate the main effect of that

attribute. Consider the previous example in which there

were 4 attributes, two with 2 levels and two with 4

levels. For the 4 level attributes S3=S4=m(m�1)/2=1,

so we only know that there must be a systematic level

change to get the levels of the two attributes in the

second option from those in the first option. Ignoring

the 2 level attributes, suppose that we choose to change

the levels of the 4 level attributes by adding 2 (mod 4).
Then we would get pairs of 0 with 2, 1 with 3, 2 with 0

and 3 with 1. Thus, only two (02, 13) of the six possible

ordered pairs (01, 02, 03, 12, 13, 23) result compared to

four of the six (01, 12, 23, 30) if we add either 1 or 3

(mod 4). This means that it is not possible to estimate

the main effects of the 4 level attributes. This situation

arises because 2+2u0 (mod 4) and it is always an

issue when constructing pairs when the number of

levels of an attribute is not prime. In this case a design

which is 95.84% efficient can be constructed by add-

ing 1 (mod 2) to the levels of the 2 level attributes and

adding 1 or 3 (mod 4) to the levels of the 4 level

attributes to obtain the profiles for the second option.

Furthermore, one can construct an optimal design by

making three sets of systematic changes, or equiva-

lently, adding three different generators, resulting in

48 pairs. Three such generators are 1112, 1121 and

1133.

9. Designs for estimating main effects and two-factor

interactions

The situation is more complicated if one wants to

estimate both main effects and two factor interactions.

If all attributes have two levels and choice sets are of

size 2, the optimal designs consist of all pairs with

(k +1)/2 attributes different (if k is odd), or all pairs

with either k/2 or k/2+1 attributes different (k even) as

established in Street et al. (2001).

If all attributes have two levels, and choice sets have

more than two options, the optimal design consists of

all choice sets in which the number of attributes that

differ between any pair of profiles in the choice set is



Table 10

Optimal pairs design for 3 binary attributes

Set # Option 1 Option 2

A1 A2 A3 A1 A2 A3

1 0 0 0 0 1 1

2 0 0 1 0 1 0

3 1 0 0 1 1 1

4 1 0 1 1 1 0

5 0 0 0 1 0 1

6 0 0 1 1 0 0

7 1 1 1 0 1 0

8 1 1 0 0 1 1

9 0 0 0 1 1 0

10 0 0 1 1 1 1

11 1 0 0 0 1 0

12 1 0 1 0 1 1

able 11

ptimal triples design for 3 binary attributes

et # Option 1 Option 2 Option 3

A1 A2 A3 A1 A2 A3 A1 A2 A3

0 0 0 1 0 1 1 1 0

0 0 1 1 0 0 1 1 1

0 1 0 1 1 1 1 0 0

0 1 1 1 1 0 1 0 1

1 0 0 0 0 1 0 1 0

1 0 1 0 0 0 0 1 1

1 1 0 0 1 1 0 0 0

1 1 1 0 1 0 0 0 1
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(k +1)/2, if k is odd, or k/2 or k/2+1 if k is even (see

Burgess & Street, 2003). Furthermore, the maximum

possible determinant of C for any choice set size has

been determined and is given by

det Cð Þ ¼
m�1ð Þ kþ2ð Þ
m kþ1ð Þ2k

� �kþk k�1ð Þ=2
k even

m�1ð Þ kþ1ð Þ
mk2k

� �kþk k�1ð Þ=2
k odd:

8><
>:

ð3Þ

Burgess and Street (2003) show that it is possible

to construct choice sets from which all main effects

and two-factor interactions can be estimated orthog-

onally for binary attributes with choice sets of size

m. They also discuss some isolated cases where it is

known that no design can exist that will realize this

bound.

For the general case, where the attributes can have

any number of levels and the choice set can be of any

size, an explicit expression for det(C) is provided by

Burgess and Street (2005) in terms of the differences

between the levels of each attribute in the choice sets.

No general constructions are known, although Burgess

and Street (2005) give optimal designs for some spe-

cific values of k and m. We now illustrate the case when

all attributes have two levels.

Consider a DCE for pairs with profiles described

by 3 attributes each with 2 levels for estimating the

main effects and all two-factor interactions. First we

require either a fractional or complete factorial design

of resolution 5 (i.e. all main effects and all two-factor

interactions can be estimated). In this case no fraction

is resolution 5, so we use the complete factorial

designs to make the profiles in the first option in

the choice sets. Because the number of attributes (k)

is odd, the optimal design consists of all pairs with

(k +1)/2=2 attributes different, so we need to system-
atically change the levels of two of the attributes in

each choice set and leave the level of the third attri-

bute unchanged. However, this does not allow the

main effects to be estimated so the process is repeated

with the level of a different attribute remaining un-

changed, while the levels of the other two attributes

are systematically changed.

One way of doing this is to leave the level of the first

attribute unchanged and add 1 (mod 2) to the second

and third attributes, then to leave the level of the second

attribute unchanged while adding 1 (mod 2) to the first

and third attributes. This will result in the choice sets

(000,011), (001,010), (100,111), (101,110) and

(000,101), (001,100), (110,011), (111,010) from the

two steps after removing repeated choice sets. This

design is 94.5% efficient. By repeating the process a

third time, this time leaving the levels of the third

attribute unchanged while adding 1 (mod 2) to the

levels of the first and second attributes, we obtain the

design in Table 10. This design is 100% efficient.

These choice sets also can also constructed by add-

ing (modulo 2) generators 011, then 101 and finally 110

to the profiles in option 1 to obtain the profiles in option

2, after removing repeated choice sets.

For choice sets with three options, the profiles in

option 2 can be obtained by leaving the levels of the

second attribute unchanged and systematically chang-

ing the levels of the first and third attributes by

adding 1 (mod 2) to the respective attributes of the

profiles in option 1. Similarly the profiles in option 3

are obtained by leaving the levels of the third attri-

bute unchanged and systematically changing the

levels of the first and second attributes by adding 1

(mod 2) to the respective attributes of the profiles in

option 1. This design is 100% efficient and is shown

in Table 11.

Alternatively, by adding (modulo 2) the generator

101 to the profiles in the first option we obtain the

profiles in the second option. Similarly by adding
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Table 12

Comparison of construction methods for main effects only

Construction method m =2 m =3 m =4

# Choice sets Eff (%) # Choice sets Eff (%) # Choice sets Eff (%)

Strategy 1 8 0 N/A N/A 4 0

16 44.4* N/A N/A 16 68.1*

Strategy 2 16 36.1* 16 65.6* 16 71.3*

Strategy 3 16 0 16 72.0* 16 76.2*

Strategy 4 64 75.0 64 75.0 64 75.0

Strategy 5 16 94.5* 16 100 16 100

Strategy 6 16 94.5 16 100 16 100

48 100
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(modulo 2) the generator 110 to the profiles in the first

option we obtain the profiles in the third option.

The main effects and all two-factor interactions can

be estimated independently in all designs discussed in

this section.

10. Comparison of strategies

In this section we compare the information matrices

of DCEs constructed using Strategies 1, 2, 3, 4 and 5

with a design constructed using the method of Burgess

and Street (Strategy 6). This comparison depends only

on the design used and it is not dependent on the data

collected. Each design is to be used to estimate only

main effects. The results are shown in Table 12. An

asterisk denotes a choice experiment in which the main

effects cannot be estimated independently.

Table 12 shows that the Strategy 5 and 6 designs are

the most efficient, but only Strategy 6 designs always

provide uncorrelated estimates of the main effects. The

designs constructed using the two random methods,

Strategies 1 and 2, have low statistical efficiency and

the estimates of the main effects are correlated. Strategy

3 designs do not perform well in this particular exam-

ple, but it is possible to construct optimal designs using

this method. The designs constructed using Strategy 4

have uncorrelated estimates of the main effects, but the

number of choice sets is larger than necessary, and the

efficiencies are less than those of Strategy 5 and 6

designs. However, strategy 4 (LMA) designs may be
Table 13

Comparison of construction methods for main effects and all two-factor int

Construction method m =2 m =

# Choice sets Eff (%) # C

Strategy 4 128 88.4* 256

Strategy 5 24 98.5* 32

Strategy 6 24 94.0 32
useful for other purposes, such as testing violations of

IIA. Finally, the Strategy 5 designs are just as efficient,

in this example, as the Strategy 6 designs but the design

for pairs does not give uncorrelated estimates of the

main effects, which often is the case with Strategy 5

designs.

Now consider designs for main effects and two-

factor interactions. Strategies 4, 5 and 6 are the only

strategies that routinely generate designs that permit

these effects to be estimated, and we compare the

designs from the three strategies for a small example.

Suppose there are four 2-level attributes, and we wish

to estimate all main effects and two-factor interactions.

The results are in Table 13; an asterisk denotes a choice

experiment in which the main effects and two-factor

interactions are correlated.

Strategy 5 designs are the most efficient, but none of

these designs allow main effects and two-factor inter-

actions to be estimated independently. Strategy 4

designs have a large number of choice sets, with effi-

ciencies less than designs based on Strategies 5 and 6.

However, Strategy 6 designs are very efficient and can

always estimate the effects of interest independently.

11. Discussion and conclusions

The Burgess and Street (2005) method of design

construction for DCEs outlined in this paper will lead

to bgoodQ designs but not necessarily to designs that are

the smallest and/or best possible (nor is it necessarily
eractions

3 m =4

hoice sets Eff (%) # Choice sets Eff (%)

93.8 256 93.8

99.8* 16 99.8*

96.7 16 99.0
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the case the smallest possible designs should be used,

as noted by Louviere et al., 2000). However, these

designs allow independent estimation of all effects,

and they generally are superior to most designs in the

published literature. Indeed, our review of that literature

suggests that the efficiency of many designs is less than

50%. By way of contrast, using the approach described

in this paper, we have encountered only one instance in

which a design was less than 90% efficient, and that

design was 87% efficient.

The construction method and examples assume that

one wants to minimize the number of choice sets to

estimate the effects of interest. To maximize the number

of observations relative to the number of parameters to

be estimated, one can repeat a construction one or more

times and combine the resulting choice sets.

As part of our strategy to minimize the number of

choice sets we have removed duplicate choice sets. On

occasion this will result in unequal replication of levels

within each option (and indeed will mean that the set of

first options, the set of second options and so on are not

main effects plans). One can avoid this by leaving in the

duplicate options.

The relative efficiencies quoted in the examples

assume no prior knowledge about the values of the

coefficients in the utility function or the choice proba-

bilities. If the values of the coefficients are known it

may be possible to improve on the designs described in

this paper. However, it is worth noting that the design
approach that we described and discussed will be opti-

mal unless there are one or two options that are ex-

tremely popular (or unpopular). In these cases the

designs easily identify the extreme options.

Similar techniques to the ones given here can be

used to obtain results about the best designs if at most s

attributes can vary between the pairs in a choice set (see

Burgess & Street, 2005; Grasshoff, Grossmann, Hol-

ling, & Schwabe, 2002).

As noted, the methods for constructing designs for

DCEs discussed in this paper generally lead to optimal

or nearly optimal designs for estimating the parameters

of MNL models. These designs have now been used in

field applications in marketing, transportation and ap-

plied economics for the past 3–4 years. The empirical

experience with these designs suggests that they indeed

deliver superior efficiency in practice as well as in

theory. However, research in this area could benefit

from additional comparisons of this construction meth-

od with others so that the research community can

better understand what works well in what circum-

stances.
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Appendix A. Table A1
Strategy 4 choice sets

Pair Option 1 Option 2 Pair Option 1 Option 2

A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 0 1 2 3 0 1 2 3 0 1 33 0 1 0 0 2 0 2 2 0 3

2 1 0 3 1 0 3 2 0 2 3 34 1 0 1 2 2 2 2 1 2 1

3 2 2 0 2 0 0 2 1 3 0 35 2 2 2 1 2 1 2 0 3 2

4 3 3 1 0 0 2 2 2 1 2 36 3 3 3 3 2 3 2 3 1 0

5 0 2 1 0 2 1 0 3 1 3 37 0 2 3 3 0 0 0 2 1 1

6 1 3 0 2 2 3 0 0 3 1 38 1 3 2 1 0 2 0 1 3 3

7 2 1 3 1 2 0 0 1 2 2 39 2 1 1 2 0 1 0 0 2 0

8 3 0 2 3 2 2 0 2 0 0 40 3 0 0 0 0 3 0 3 0 2

9 0 3 3 1 3 1 1 3 2 0 41 0 3 1 2 1 0 1 2 2 2

10 1 2 2 3 3 3 1 0 0 2 42 1 2 0 0 1 2 1 1 0 0

11 2 0 1 0 3 0 1 1 1 1 43 2 0 3 3 1 1 1 0 1 3

12 3 1 0 2 3 2 1 2 3 3 44 3 1 2 1 1 3 1 3 3 1

13 0 0 0 2 1 1 3 3 3 2 45 0 0 2 1 3 0 3 2 3 0

14 1 1 1 0 1 3 3 0 1 0 46 1 1 3 3 3 2 3 1 1 2

15 2 3 2 3 1 0 3 1 0 3 47 2 3 0 0 3 1 3 0 0 1

16 3 2 3 1 1 2 3 2 2 1 48 3 2 1 2 3 3 3 3 2 3

17 0 1 3 2 1 3 2 1 0 2 49 0 1 1 1 3 2 2 0 0 0

18 1 0 2 0 1 1 2 2 2 0 50 1 0 0 3 3 0 2 3 2 2

19 2 2 1 3 1 2 2 3 3 3 51 2 2 3 0 3 3 2 2 3 1

20 3 3 0 1 1 0 2 0 1 1 52 3 3 2 2 3 1 2 1 1 3

21 0 2 0 1 3 3 0 1 1 0 53 0 2 2 2 1 2 0 0 1 2

22 1 3 1 3 3 1 0 2 3 2 54 1 3 3 0 1 0 0 3 3 0

23 2 1 2 0 3 2 0 3 2 1 55 2 1 0 3 1 3 0 2 2 3

24 3 0 3 2 3 0 0 0 0 3 56 3 0 1 1 1 1 0 1 0 1

25 0 3 2 0 2 3 1 1 2 3 57 0 3 0 3 0 2 1 0 2 1

26 1 2 3 2 2 1 1 2 0 1 58 1 2 1 1 0 0 1 3 0 3

27 2 0 0 1 2 2 1 3 1 2 59 2 0 2 2 0 3 1 2 1 0

28 3 1 1 3 2 0 1 0 3 0 60 3 1 3 0 0 1 1 1 3 2

29 0 0 1 3 0 3 3 1 3 1 61 0 0 3 0 2 2 3 0 3 3

30 1 1 0 1 0 1 3 2 1 3 62 1 1 2 2 2 0 3 3 1 1

31 2 3 3 2 0 2 3 3 0 0 63 2 3 1 1 2 3 3 2 0 2

32 3 2 2 0 0 0 3 0 2 2 64 3 2 0 3 2 1 3 1 2 0
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