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Abstract

This paper compares different types of simulated draws over a range of
number of draws in generating Bayesian efficient designs for stated choice
(SC) studies. The paper examines how closely pseudo Monte Carlo, quasi
Monte Carlo and Gaussian quadrature methods are able to replicate the
true levels of Bayesian efficiency for SC designs of various dimensions. The
authors conclude that the predominantly employed method of using pseudo
Monte Carlo draws is unlikely to result in leading to truly Bayesian efficient
SC designs. The quasi Monte Carlo methods analysed here (Halton, Sobol,
and Modified Latin Hypercube Sampling) all clearly outperform the pseudo
Monte Carlo draws. However, the Gaussian quadrature method examined in
this paper, incremental Gaussian quadrature, outperforms all, and is there-
fore the recommended approximation method for the calculation of Bayesian
efficiency of SC designs.

Keywords: experimental design, Bayesian efficiency, (quasi) Monte Carlo
simulation, Gaussian quadrature

1 Introduction

The generation of stated choice (SC) experiments has evolved to become an in-
creasingly important, but complex component of SC studies (Burgess and Street,
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2003; Carlsson and Martinsson, 2003; Ferrini and Scarpa, 2006; Huber and Zwe-
rina, 1996; Kanninen, 2002; Kessels et al., 2006; Kuhfeld et al., 1994; Lazari and
Anderson, 1994; Sándor and Wedel, 2001, 2002, 2005; Street and Burgess, 2004;
Street et al. 2001). Typically, SC experiments present sampled respondents with
a number of hypothetical scenarios (known as choice situations) consisting of a
universal but finite number of alternatives that differ on a number of attribute
dimensions. These respondents are then asked to specify their preferred alterna-
tive from the set of alternatives presented within each choice situation based on
the attribute levels shown. These responses are then pooled both over hypothet-
ical choice scenarios and respondents before being used to estimate parameter
weights for each of the design attributes (or in some cases, even attribute levels).
These parameter weights may then be used to solve problems in many different
research areas. For example, in transport, SC data has been used to examine
the demand for a cycle-way network (e.g., Ortúzar et al., 2000), and to calculate
Value of Travel-Time Savings (VTTS) of commuters and non-commuters (e.g.,
Hensher, 2001a,b), whilst in marketing, choice of orange juice (e.g., Swait and
Adamowicz, 2001) and soft drink and holiday destination choice (Louviere and
Woodworth, 1983) have been examined. In health economics for example, SC
methods have been used to model smoking cessation (Paterson et al., in press)
and different treatment options (e.g., Ratcliffe, 2002).

Traditionally, researchers have relied upon the use of orthogonal experimental
designs to populate the hypothetical choice situations shown to respondents (see
Louviere et al., 2000, for a review of orthogonal designs). More recently however,
some researchers have begun to question the relevance of orthogonal designs when
applied to SC experiments (e.g., Huber and Zwerina, 1996; Kanninen, 2002;
Kessels et al., 2006; Sándor and Wedel, 2001, 2002, 2005; Bliemer and Rose,
2008; Rose et al., 2008; Bliemer et al. in press). Whilst orthogonality allows for
the effects to be estimated independently in linear models, this is no longer true
for nonlinear models such as discrete choice models (Bliemer and Rose 2006).
In models of discrete choice, the correlation structure between the attributes is
not what is of importance. Rather, given the derivation of the models, it is the
correlations of the differences in the attributes which should be of concern.

Huber and Zwerina (1996) took the important step of relating the statisti-
cal properties of the SC experiments to the econometric models estimated on
such data. In their paper, Huber and Zwerina showed that designs that let go
of orthogonality as a consideration in generating SC experiments and which at-
tempt to reduce the asymptotic standard errors of the parameter estimates (i.e.,
the square roots of the diagonal elements of the asymptotic variance-covariance
(AVC) matrix) will generally result in designs that either (i) improve the reliabil-
ity of the parameters estimated from SC data at a fixed sample size or (ii) reduce
the sample size required to produce a fixed level of reliability in the parameter es-
timates with a given experimental design. The linking of the experimental design
generation process to attempts to reduce the asymptotic standard errors of the
parameter estimates has resulted in a class of designs known as ‘efficient designs’
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where designs that produce smaller asymptotic standard errors are thought of as
being more efficient.

In order to calculate the AVC matrix for a SC design, the analyst requires a
priori knowledge of the utility functions for that design. This is because the values
of the AVC matrix are directly dependent upon both the attribute levels and the
choice probabilities of the alternatives contained within each of the design’s choice
situations. The choice probabilities for a given design are in turn a function of
the attribute levels of the alternatives as well as the parameter weights associated
with each of these attributes. As such, the parameter values play a key role in
determining the level of efficiency of a design. Unfortunately, the exact parameter
values are unlikely to be known at the design construction phase, and as such,
the researcher may have to make certain assumptions as to what values (termed
priors) these will be in order to generate an efficient design.

Four different approaches have been used in the past regarding the parame-
ter priors assumed in generating efficient SC experiments. In the first approach,
researchers have made the strong assumption that all parameter priors for the
design are simultaneously equal to zero (e.g., Burgess and Street, 2003; Grasshoff
and Schwabe, 2006; Huber and Zwerina 1996; Street and Burgess, 2004; Street
et al., 2001). Street et al. make this assumption for analytical reasons, enabling
them to locate truly optimal (most efficient) designs. This optimality will only
exist under the assumption of zero parameter estimates, which is unlikely to hold
in reality. A second approach that has sometimes been used is to assume that
the parameter priors are non-zero and known with certainty (e.g., Carlsson and
Martinsson, 2003; Huber and Zwerina, 1996; Rose and Bliemer, 2005). In such an
approach, a single fixed prior is assumed for each attribute. Whilst the assump-
tion of perfect certainty is a strong one, the design generation process is such
that researchers are able to test its impact on a design’s efficiency assuming mis-
specification of the priors. Sándor and Wedel (2001) introduced a third approach
by relaxing the assumption of perfect a priori knowledge of the parameter priors
through adopting a Bayesian approach to the design generation process. Rather
than assume a single fixed prior for each attribute, the efficiency of a design is
now determined over a number of draws taken from prior parameter distribu-
tions assumed by the researcher. Different distributions may be associated with
different population moments representing different levels of uncertainty with re-
gards to the true parameter values. This approach has been adopted by, among
others, Kessels et al. (2006, in press) and Yu et al. (in press), assuming normal
distributions with different means and standard deviations. A fourth approach is
described by Kanninen (2002). She proposes to update the prior values sequen-
tially, in which the design is updated during the data collection phase by using
newly estimated model parameters as priors. In this paper we concentrate on the
third (Bayesian) approach.

The Bayesian approach to constructing efficient SC experiments requires that
the efficiency of a design be evaluated over numerous different draws taken from
the prior parameter distributions assumed in generating the design. The Bayesian
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efficiency of a design is then calculated as the expected value of whatever measure
of efficiency is assumed over all the draws taken. The Bayesian approach therefore
necessitates the use of simulation methods to approximate the expectations for
differing designs. In this paper we will focus on the evaluation of the Bayesian
efficiency of a given design and will not discuss algorithms for generating these
designs.

For computing the Bayesian efficiency, a number of different simulation pro-
cedures are available to researchers, with the simplest being the use of pseudo
random draws. In using pseudo random draws (often referred to as pseudo Monte
Carlo, or PMC draws), points from a distribution are randomly selected. Whilst
simple to implement in practice, results obtained using PMC draws are suscep-
tible to being specific to the particular draws taken from whatever distribution
is assumed, with different sets of random draws likely to produce different cover-
age over the distribution space, possibly leading to widely different results when
calculating the expectations. This risk is especially high with the use of a small
number of draws. The precision of simulation processes may potentially be im-
proved by using a more systematic approach in selecting points when sampling
from a distribution. Such techniques are commonly referred to within the litera-
ture as quasi random Monte Carlo draws (see, for example, Bhat 2001, 2003; Hess
et al., 2005; Sándor and Train, 2003). The potential to provide better coverage
of the distribution space for each prior parameter distribution should theoreti-
cally result in a lower approximation error in calculating the simulated choice
probabilities for a given design. This in turn will result in greater precision in
generating the design’s AVC matrix, resulting in greater precision in terms of
the Bayesian efficiency measure of that design. Other methods, such as Gaussian
quadrature, also aim to minimize the approximation error when calculating the
Bayesian efficiency.

Independent of the type of draws used, the researcher must decide on the
number of draws to use. If too few draws are taken, it is probable that the
resulting Bayesian measure of efficiency will be far from the true efficiency for a
given design. If too many draws are used, the computation time in generating
an efficient design will be unnecessarily high. The issue therefore becomes one of
how many draws should be used before the Bayesian measure of efficiency will
converge to the true efficiency level for a given design, or alternatively, fall within
some acceptable error range around the true value. Unfortunately, the answer to
this question will likely depend on the dimensions of the design itself, the number
of Bayesian priors assumed, the population of the prior distributions, the type
of econometric model used, as well as the type of draws employed. Kessels et
al. (in press) argue that a well-designed systematic 20-point sample may be
sufficient to give a good enough approximation of the Bayesian efficiency, at least
in a first step of a search algorithm, although no claims can be given for general
experiments. Improvements in search algorithms and in faster evaluations of the
Bayesian efficiency should both lead to significantly smaller computation times
for determining a Bayesian efficient design. From a search algorithm perspective
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(for unlabeled experiments), the reader is referred to Kessels et al. (in press) and
Yu et al. (in press), which deal with determining Bayesian efficient designs for
the multinomial logit and mixed logit model, respectively. This paper focuses on
the simulation of the Bayesian efficiency.

The purpose of this paper is to examine over a range of draws, the perfor-
mance of various forms of draws in approximating the true level of efficiency for
a number of different designs. This paper compares the performance of the PMC
method to three different types of quasi random Monte Carlo draws, namely
Halton, Sobol, and Modified Latin Hypercube Sampling (MLHS) draws, and one
Gaussian quadrature method, namely Gauss-Hermite approximation. In making
our comparisons, we vary not only the number of draws but also the dimensions
of the designs. In doing so, we are able to make recommendations as to what
are the best types of draws to use as well as how many to use when generating
designs of different dimensions.

The remainder of the paper is as follows. In the following section, we de-
fine efficiency as related to SC experimental designs. Section 3 further details
Bayesian efficiency for SC experiments and discusses each of the approximation
methods in more detail. Section 4 provides case studies in which we compare
the performance of the types of draws varying the number of draws taken over
a range of different experimental designs. Section 5 provides a discussion and
conclusion to the paper.

2 Efficiency of experimental designs for discrete choice
models

Historically, efficiency when dealing with SC studies has generally been related
to how statistically reliable the parameters in a discrete choice model will likely
be when estimated using data obtained from a SC experiment. Reliability of
the parameters has been defined in terms of the asymptotic standard errors and
covariances of the model parameters to be estimated where improvements in
reliability suggest a reduction in the asymptotic standard errors and hence an
increase in the asymptotic t-ratios of the model estimates. As such, the use of
more efficient designs leads to an expectation that a lower number of respondents
will be required to produce statistically significant parameter estimates for a given
SC study when compared to less efficient designs.

Measurement of the (in)efficiency of a SC experimental design is typically
expressed in terms of some form of error (e.g., D-error, A-error) derived from the
AVC matrix for the design. Both the dimensions of the AVC matrix of a design
and the values that populate it will influence the (in)efficiency of the design. In
turn, the AVC of a design will depend on the following:

(a) Econometric form of the discrete choice model estimated: Different discrete
choice models (e.g., multinomial logit (MNL), nested logit (NL), mixed logit

102



Bliemer et al., Journal of Choice Modelling, 1(1), 2008, 98-126

(ML) models) lead to different AVC matrices;

(b) Experimental design: Different choice situations (i.e., different combinations
of attribute levels in each choice situation) lead to different AVC matrices;
and

(c) Prior parameter values: Different assumptions made regarding the true val-
ues of the parameter estimates result in different AVC matrices.

Let the AVC matrix be denoted by Ω(β̃|X), where β̃ represents the prior pa-
rameter values and X the attribute levels in the underlying experimental design.
This matrix can be determined (analytically or by simulation) for various econo-
metric representations of the discrete choice models. The D-error, describing the
inefficiency of a design, can be expressed as

f(β̃|X) = det
(

Ω(β̃|X)
)1/K

, (1)

where K is the number of parameters1. The lower this D-error, the higher the
overall efficiency of the design will be. Hence, given the prior parameters and
the discrete choice model, the aim in creating the experimental design is to find
attribute levels X such that this D-error is as low as possible. The design with
the lowest D-error is termed D-optimal. Other (in)efficiency measures exist which
may be substituted for D-error. For example, some researchers prefer A-error,
where Equation 1 now becomes (replacing the determinant by the trace of the
matrix and normalizing it by dividing by the number of parameters):

f(β̃|X) =
tr
(

Ω(β̃|X)
)

K
. (2)

Other efficiency measures have been proposed in the literature, such as the G-
error and V-error, both focusing on prediction accuracy instead of estimation
accuracy (see Kessels et al., 2006). In the remainder of the paper, we will use the
D-error criterion for design efficiency, being the most widely used criterion.

Up to this point, it has been assumed that the prior parameter values are fixed
and known. As mentioned before, the parameters are unknowns to be estimated
in the model using the data collected from some underlying SC experiment. The
literature has suggested some starting points for identifying prior parameter val-
ues that may be useful in constructing efficient SC experiments such as obtaining
them from previous studies, focus groups, pilot studies, managers, etc. (Sándor
and Wedel, 2001). Nevertheless, priors obtained using these methods will likely

1 In Rose and Bliemer (2005), it is suggested that the rows and columns for the parameters
representing constants in the model should be removed from the AVC matrix when computing
the D-error, as they may dominate the D-error while having no clear efficiency meaning in a
stated choice experiment.
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exhibit a certain degree of uncertainty. Unfortunately, the efficiency of the algo-
rithmically constructed designs is only guaranteed for the prior parameter values
assumed in the design construction. The experimental design may become less
efficient if the prior values are incorrect. In order to generate a more robust exper-
imental design incorporating uncertainty in the parameter priors assumed (i.e.,
the design generation process does not solely depend on fixed priors), a Bayesian
approach has been proposed within the literature (Sándor and Wedel, 2001). Us-
ing this approach, (a subset of) prior parameters are assumed to have random
distribution(s) rather than fixed values. Such designs are known as Bayesian ef-
ficient designs if the expected efficiency is high (or the associated expected error
low). Let ϕ(β̃|θ) denote the multivariate probability density function of the priors
β̃, where θ are the corresponding parameters of this distribution (e.g., if β̃ follows
a normal distribution, then θ represents the means and standard deviations of
this multivariate normal distribution). The Bayesian D-error can then be written
as the expected D-error,

E (f) =

∫
β̃
f(β̃|X)ϕ(β̃|θ)dβ̃. (3)

Minimizing the Bayesian D-error (denoted Db-error) will yield a Db-optimal ex-
perimental design. Unfortunately, computation of the above integral is complex
as it cannot be calculated analytically. Therefore, it has to be approximated,
typically by simulation. Approximation of this integral can be time consuming.
As in general millions of experimental designs may need to be evaluated when
searching for a (Bayesian) efficient design, computation time is a real issue. For
realistically sized experimental designs with many randomly distributed param-
eters, this may not be feasible if the Db-error cannot be computed quickly. In
the next section, different approximations are outlined and discussed. We show
that much better (and faster) approximation methods are available than those
currently used by most researchers.

3 Approximation of bayesian efficiency

In this section we will describe several different methods for approximating the
Db-error as stated in Equation 3. Three main types of approximations are con-
sidered, namely (a) pseudo-random Monte Carlo (PMC) simulation, (b) quasi-
random Monte Carlo simulation, and (c) Gaussian quadrature. The most com-
mon method is PMC simulation, which is currently used by all but few re-
searchers2.

Independent of the method, the principles in generating efficient SC experi-
ments remain the same:

2 Sándor and Wedel (2002, 2005) adopt a quasi random Monte Carlo approach; orthogonal
array-based Latin hypercube sampling, and randomly shifted good lattice points, respectively.
Yu et al. (in press) used Halton draws. All other papers reviewed appear to use PMC methods.
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1. first, R values are drawn from the random distribution of the prior param-
eter values;

2. then, for each of these parameter values, the D-error is evaluated; and

3. an average D-error is computed over these values (giving the Db-error).

The PMC and quasi-random MC methods all take a simple (unweighted) average
of the different Db-errors, but differ in the way they take the draws from the
random distribution. In the PMC method, these draws are completely random,
whereas in the quasi-random MC methods they are intelligent and structured,
and in most cases deterministic. The Gaussian quadrature methods construct
intelligent and deterministic draws as well, but also determine specific weights
for each draw and compute a weighted average.

Rather than drawing from a multivariate distribution, all methods generally
use independent draws from univariate distributions for each random prior β̃k,
under the assumption that all parameters are independent.3 Under this assump-
tion, Equation 3 can be written as

E(f) =

∫
β̃
f(β̃|X)ϕ(β̃|θ)dβ̃ =

∫
β̃1

· · ·
∫
β̃K

f(β̃|X)

K∏
k=1

ϕk(β̃k|θk)dβ̃1 · · · dβ̃K . (4)

Equation 4 also allows priors to have different forms of random distributions,
such as mixing priors with a normal and a uniform distribution. The distribution
parameters θk will determine the mean prior value and the standard deviation
(uncertainty) of that prior. Hence, one can include uncertainty for each prior
parameter by specifying the corresponding random distribution.

Below, each of the approximation methods is outlined.

3.1 Pseudo-random Monte Carlo (PMC) simulation

In PMC simulation, for each of the K parameters, R independent draws are
taken from their given prior distributions. For each of these R draws of the
prior parameters, the Db-error is computed. Finally, the average is taken of all

computed D-errors. Let β̃(r) = [β̃
(r)
1 , . . . , β̃

(r)
K ] denote draw r, r = 1, . . . , R, from

the corresponding prior random distributions described by the probability density
functions ϕk(β̃k|θk). The approximation of the Db-error can be formalized as

E(f) ≈ 1

R

R∑
r=1

f(β̃(r)|X). (5)

The total number of D-error evaluations is equal to R. In order to determine the

draws β̃
(r)
k , we let the computer generate for each parameter R pseudo-random

3 Although it is possible to draw from the multivariate distribution and allow for dependen-
cies, e.g. by using the Cholesky decomposition for the multivariate normal distribution.
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numbers u
(r)
k which are uniformly distributed on the interval [0,1], and then

compute the draws by

β̃
(r)
k = Φ−1k

(
u
(r)
k

)
, (6)

where Φk(β̃k|θk) denotes the cumulative distribution function corresponding to
the probability density function ϕk(β̃k|θk).

3.2 Quasi-random Monte Carlo simulation

Randomness of the draws is not a prerequisite in the approximation of the inte-
gral in Equation 3; rather, Winiarski (2003) has argued that (a) correlation or
a systematic structure between draws for different dimensions can have a pos-
itive effect on the approximation, and (b) one should aim for the draws to be
distributed as uniformly as possible over the area of integration. Hence, the
draws can be selected deterministically so as to minimize the integration error,
which is exactly what quasi-random MC simulation methods aim to do. For a
more detailed discussion on these methods we refer to Niederreiter (1992) and
Fang and Wang (1994). Quasi-random MC simulation methods for approximat-
ing the Db-error are almost identical to the PMC simulation method, except

that they use deterministic draws for β̃
(r)
k (as opposed to purely random draws).

In fact, Equation 5 and Equation 6 are still valid, but instead of generating

pseudo-random numbers u
(r)
k ∼ U(0, 1), these numbers u

(r)
k are taken from dif-

ferent intelligent quasi-random sequences, also called low discrepancy sequences.
Using these quasi-random sequences, faster convergence to the true value of the
numerical integration can be achieved. PMC simulation has a slow rate of con-

vergence of O
(

1/
√
R
)
, while quasi-random MC simulation typically has a rate

of convergence as good as O (1/R) .4

In this paper, we examine three different sequences. MLHS aims to distribute
the draws uniformly, while maintaining randomness between different dimensions.
Halton and Sobol sequences provide a certain degree of uniformity in the distri-
bution of the draws, but also introduce correlations between the sequences in
different dimensions. We now look at these three approaches in turn.

3.2.1 Modified Latin Hypercube Sampling (MLHS)

The MLHS method (Hess et al., 2005) produces multi-dimensional sequences by
combining randomly shuffled versions of one-dimensional sequences made up of

4 The theoretical lowest rate of convergence for quasi-random MC simulation is
O
((

logK R
)
/R

)
which depends on the number of dimensions, K, such that in theory quasi-

random MC simulation can become quite slow for higher dimensions. The fastest theoretical
rate of convergence is O (1/R) In practice, the rate of convergence seems to be much closer to
this faster rate, even for higher dimensions.
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uniformly spaced points. Formally, the individual one-dimensional sequences of
length R are constructed as:

u
(r)
k =

r − 1

R
+ ξk, r = 1, . . . , R, (7)

where ξk is a random number drawn between 0 and 1/R, and where a different
random draw is used in each of the K different dimensions. In the resulting
sequence, the distances between adjacent draws are all equal to 1/R, satisfying
the condition of equal spacing. Multi-dimensional sequences are constructed by
simple combination of randomly shuffled one-dimensional sequences, where the
shuffling disrupts the correlation between individual dimensions.

3.2.2 Halton sequences

Halton sequences (Halton, 1960) are based on the one-dimensional Van der Cor-
put sequence (Van der Corput, 1935) are constructed according to a determin-
istic method based on the use of prime numbers, dividing the 0-1 space into pk
segments (with pk giving the prime used as the base for parameter k), and by
systematically filling in the empty spaces, using cycles of length pk that place one
draw in each segment. Formally, the rth element in the Halton sequence based
on prime pk is obtained by taking the radical inverse of integer r in base pk by
reflection through the radical point, such that

r =

L∑
`=0

b
(r)
` p`k, (8)

where 0 ≤ b
(r)
` ≤ pk − 1 determines the L digits used in base pk in order to

represent r (i.e., solving Equation 8), and where the range for L is determined
by pLk ≤ r < pL+1

k . The draw is then obtained as:5

u
(r)
k =

L∑
`=0

b
(r)
` p−`−1k . (9)

To allow for the computation of a simulation error, the deterministic Halton
sequence can be randomized in several ways. Here, we use the approach discussed
by amongst others Tuffin (1996), where the modified draws are obtained by adding
a random draw ξk to the individual draws in dimension k, and by subtracting
one from any draws that now fall outside the 0-1 interval. A different random
draw is used for each dimension.

5 As an example, consider the 5th draw using 2 (the first prime number) as base. Then r = 5
can be expressed using three digits as 101 in base 2, because 5 = 1 · 20 + 0 · 21 + 1 · 22. Using
Equation 9 the 5th draw is then given by 1 ·2−0−1+0 ·2−1−1+1 ·2−2−1 = 0.5+0+0.125 = 0.625.
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3.2.3 Sobol sequences

The main problem with Halton sequences is the fact that the individual sequences
are highly correlated, leading to problems with poor multi-dimensional cover-
age in higher dimensions. Aside from various transformations of the standard
Halton sequence and other advanced methods (cf. Hess et al., 2005), one ap-
proach that has received exposure in the area of discrete choice modeling is the
Sobol sequence, used amongst others by Garrido (2003). Like Halton sequences,
Sobol sequences are based on Van der Corput sequences (cf. Niederreiter 1992).
However, rather than in a K-dimensional problem using the first K primes (as
in Halton sequences), Sobol sequences are based on prime 2 in each dimension,
where different permutations are used to ensure that the resulting K-dimensional
sequence obtains good coverage. We will use a randomized version of the Sobol
sequences equivalent to the randomization in the Halton sequences by adding a
random component to each of the draws in each dimension.

3.3 Gaussian quadrature

Polynomial cubature methods aim to approximate integrals using orthogonal
polynomials. Gaussian quadrature is the best-known method, see e.g. Stoer
and Bulirsch (2002). In case of a single variable, the use of R draws yields an ex-
act approximation if the integrand is a polynomial up to degree (2R-1). General
functions can be approximated by (high order) polynomials, hence the higher the
degree (yielding more draws), the more accurate the approximation will be.

The principle of Gaussian quadrature is that not only the draws β̃
(r)
k for the

priors are selected intelligently, but also that weights w
(r)
k are associated with

each draw. The approximation of the Db-error using Gaussian quadrature can be
formalized as

E(f) ≈
R1∑
r1=1

· · ·
RK∑
rK=1

w
(r1)
1 · · ·w(rK)

K f(β̃
(r1)
1 , . . . , β̃

(rK)
K |X). (10)

The draws for the priors and the associated weights depend on the random dis-

tribution. Different draws β̃
(r)
k for each individual parameter are called abscissas.

The draws for the whole vector β̃(r) are given by a rectangular grid of these ab-
scissas.6 In the case where β̃k ∼ N(µk, σk), the abscissas and weights can be
computed using so-called Hermite polynomials. If β̃k ∼ U(ak, bk), the abscissas
and weights can be computed using so-called Legendre polynomials. The abscis-
sas and weights for both situations are listed in Table 1 for up to 10 abscissas for

6For example, suppose that the first parameter has two abscissas and the second parameter
has three. Let β̃

(1)
1 and β̃

(2)
1 denote the abscissas for the first parameter and β̃

(1)
2 , β̃

(2)
2 and β̃

(3)
2

the abscissas of the second parameter. Then the draws for β̃ will be
(
β̃
(1)
1 , β̃

(1)
2

)
,
(
β̃
(1)
1 , β̃

(2)
2

)
,(

β̃
(1)
1 , β̃

(3)
2

)
,
(
β̃
(2)
1 , β̃

(1)
2

)
,
(
β̃
(2)
1 , β̃

(2)
2

)
and

(
β̃
(2)
1 , β̃

(3)
2

)
, hence 6 draws in total.
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Table 1: Abscissas and weights for Gauss-Hermite and Gauss-Legendre integra-
tion

Normal distribution N(µk, σk) Uniform distribution U(ak, bk)

β̃
(r)
k = µk + x(r)

√
2σk β̃

(r)
k = 1

2 (ak + bk) + 1
2 (bk − ak)x(r)

Rk x(r) w
(r)
k x(r) w

(r)
k

1 0 1 0 1
2 ±0.7071067812 0.5 ±0.5773502692 0.5
3 0 0.666666667 0 0.444444444
±1.2247448714 0.166666667 ±0.7745966700 0.277777778

4 ±1.6506801239 0.045875855 ±0.3399810400 0.326072575
±0.5246476233 0.454124145 ±0.8611363100 0.173927425

5 0 0.533333333 0 0.284444445
±2.0201828705 0.011257411 ±0.5384693100 0.239314335
±0.9585724646 0.222075922 ±0.9061798500 0.118463445

6 ±2.3506049737 0.002555784 ±0.2386191800 0.233956965
±1.3358490740 0.088615746 ±0.6612093900 0.180380785
±0.4360774119 0.40882847 ±0.9324695100 0.085662245

7 0 0.457142857 0 0.20897959
±2.6519613568 0.000548269 ±0.4058451500 0.190915025
±1.6735516288 0.030757124 ±0.7415311900 0.139852695
±0.8162878829 0.240123179 ±0.9491079100 0.064742485

8 ±2.9306374203 0.000112615 ±0.1834346400 0.18134189
±1.9816567567 0.00963522 ±0.5255324100 0.156853325
±1.1571937125 0.117239908 ±0.7966664800 0.111190515
±0.3811869902 0.373012258 ±0.9602898600 0.05061427

9 0 0.406349206 0 0.165119678
±3.1909932018 2.23458E-05 ±0.3242534234 0.156173539
±2.2665805845 0.002789141 ±0.6133714327 0.130305348
±1.4685532892 0.049916407 ±0.8360311073 0.09032408
±0.7235510188 0.244097503 ±0.9681602395 0.040637194

10 ±3.4361591188 4.3107E-06 ±0.1488743400 0.14776211
±2.5327316742 0.000758071 ±0.4333953900 0.13463336
±1.7566836493 0.019111581 ±0.6794095700 0.10954318
±1.0366108298 0.135483703 ±0.8650633700 0.074725675
±0.3429013272 0.344642335 ±0.9739065300 0.03333567

each individual parameter. The weights always sum up to one, i.e.,
∑R

r=1w
(r)
k = 1

for each k. For each of the K parameters, the number of abscissas used, Rk, can
be different.

Note that the total number of D-error evaluations in Gaussian quadrature is
equal to R =

∏K
k=1Rk, that is, the total number of all combinations of abscissas

in all dimensions. This number of D-error evaluations grows exponentially if the
number of random priors increases.7 Therefore, Gaussian quadrature is typically

7 The minimum number of abscissas is typically two, such that with 10 random parameters,
the minimum number of draws possible using Gaussian quadrature is 210 = 1,024. Using three
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Table 2: Model specifications

Model Systematic utility functions Comments

M1 V1 = β1x11 + β2x12 0 constants
V2 = β1x21 + β2x22 2 generic par.

0 alt.-spec. par.

M2 V1 = β01 + β1x11 + β2x12 + β3x13 1 constant
V2 = β1x21 + β2x22 + β4x23 2 generic par.

2 alt.-spec. par.

M3 V1 = β01 + β1x11 + β2x12 + β3x13 2 constants
V2 = β02 + β1x21 + β2x22 + β4x23 2 generic par.
V3 = β1x31 + β2x32 + β5x33 + β6x34 4 alt.-spec. par.

M4 V1 = β01 + β1x11 + β2x12 + β3x13 + β4x14 2 constants

V2 = β02 + β1x21 + β2x22 + β5x23 + β6x
(1)
24 2 generic par.

V3 = β1x31 + β2x32 + β7x33 + β8x34 6 alt.-spec. par.
(1 for dummy)

M5 V1 = β01 + β1x11 + β2x12 + β3x14 + β4x
(1)
15 + β5x

(2)
15 2 constants

V2 = β02 + β1x21 + β2x22 + β6x
(1)
25 + β7x

(2)
25 + β8x

(1)
26 2 generic par.

V3 = β1x31 + β2x32 + β9x33 + β10x
(1)
35 8 alt.-spec. par.

(6 for dummies)

M6 V1 = β01 + β1x11 + β2x16 + β3x12 + β4x14 + β5x
(1)
15 + β6x

(2)
15 2 constants

V2 = β02 + β1x21 + β2x27 + β3x22 + β7x
(1)
25 + β8x

(2)
25 + β9x

(1)
26 + β10x28 3 generic par.

V3 = β1x31 + β2x36 + β3x32 + β11x33 + β12x
(1)
35 9 alt.-spec. par.

(6 for dummies)

not suitable for integrals of high dimensionality, although it is extremely powerful
for low-dimensional problems.

4 Case studies

4.1 Model and experimental design description

We consider six different discrete choice models with the number of parameters
ranging from two to 14, see Table 2, where the number of utility functions (al-
ternatives) is either two or three. They are all of the multinomial logit (MNL)
type, although a similar analysis could be performed for nested logit (NL) and
mixed logit (ML) by replacing the AVC matrix, see Appendix A. The levels of the
attributes are given in Table 3, where some of the attributes are dummy-coded.
The constants in the model are assumed to have fixed priors (the constants are es-
sentially design parameters in a stated choice experiment), where the uncertainty
about the other parameters translates into random prior parameter values. In
our case studies, each prior parameter β̃k is assumed to be normally distributed
with a mean µk and a standard deviation σk,

β̃k ∼ N(µk, σk). (11)

abscissas per random parameter increases this number to 310 = 59,049.
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Table 3: Attribute levels

Attribute Number of levels Levels

x11, x21, x31 3 10, 20, 30
x12, x22, x32 3 1, 3, 5
x13, x23 3 2, 4, 6
x14 3 4, 7, 10
x15, x25 3 dummy-coded
x16 3 5, 10, 15
x24, x26, x35 2 dummy-coded
x28 3 1, 2, 3
x33 3 3, 5, 7
x34 4 2, 4, 6, 8

Table 4: Prior parameter mean values

model β01 β02 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12
M1 - - -0.09 -0.3 - - - - - - - - - -
M2 1.2 - -0.09 -0.3 0.5 0.8 - - - - - - - -
M3 3 1.4 -0.09 -0.3 0.5 0.9 0.3 0.7 - - - - - -
M4 -1.2 0.8 -0.09 -0.3 0.5 0.6 0.9 1.2 0.3 0.7 - - - -
M5 -3 -1.5 -0.09 -0.3 0.9 0.6 0.9 0.3 0.8 1.2 0.3 0.8 - -
M6 -3.3 1 -0.09 -0.06 -0.3 0.6 0.5 0.9 0.3 0.8 1.2 -0.3 0.3 0.8

The means µk are listed in Table 4 while the standard deviations are taken as a
function of the mean,

σk = α |µk| , α ≥ 0. (12)

We will consider two situations, namely a small uncertainty about the prior means
using α = 0.1 and a large uncertainty about the prior means using α = 0.3.

The designs (D1 through D6 for models M1 through M6) used for assessing
the Db-errors with different approximations are listed in Appendix B. In the next
subsection the Db-errors calculated using the different approximation methods
are compared for each model/design.

4.2 Comparison of approximation methods

For each design we calculate the Db-error using the five different approximations:
PMC draws, MLHS, Halton sequences, Sobol sequences, and Gauss-Hermite. For
each design, all approximation outcomes are compared to the true value of the
Db-error, obtained by using a very large number of draws (all methods converged
to the same true Db-error in the limit). The Db-errors are computed for different
numbers of draws, from 20 draws up to 10,000–40,000 draws (depending on the
model/design). The deviation from the true Db-error is computed as a percentage.
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Rather than computing a single percentage for the deviation from the true
Db-error for a given number of draws in each approximation, 50 deviations are
computed by changing the draws 50 times randomly, which is trivial for PMC
draws and MLHS and is described for Halton sequences and Sobol sequences in
Section 3. Using these 50 values, we determine the 95 percent confidence intervals
for the Db-errors. Since Gaussian quadrature is completely deterministic, these
draws cannot be randomized; hence, there is no need to compute a confidence
interval in this case. In Gaussian quadrature, the number of draws cannot be
chosen arbitrarily, as the number of draws should be a multiple of the number
of abscissas used. We increase the number of draws each time by increasing the
number of abscissas for a single parameter prior. Note that we do not require
that each individual parameter prior has the same number of abscissas. Instead,
we use different numbers of abscissas for each prior, depending on the impact this
prior has on the utility. That is, if a prior has a large effect on the utility (i.e.,
if both the prior parameter value and the attribute levels are high) and has a
large standard deviation, then we require more information on this prior in order
to calculate the Db-error more accurately. The priors are ranked in decreasing
order of the mean value multiplied with the corresponding average attribute level.
Starting with a single abscissa for each prior, the prior with the highest order
will face an increase in the number of abscissas first, then the second in order,
etc., until all priors have two abscissas each. Then the procedure starts all over
again by increasing the number of abscissas for each prior in the same order. The
total number of draws used in the Gauss-Hermite approximation is equal to the
product of all prior abscissas, as mentioned in Section 3.3.

Figure 1 depicts confidence intervals for the deviations from the true Db-errors
for the different approximation methods for design D3 (see Appendix A) using
different numbers of draws R and large standard deviations of the priors (α =
0.3). Note that this design corresponds to model M3 having six parameters with
prior distributions (the constants are assumed to have fixed parameter priors).
The figures for the other designs show very similar results and as such are not
reproduced here. A summary of the confidence intervals for all designs with small
and large standard errors are given in Table 5 and Table 6 respectively. From
Figure 1, we can conclude that using PMC draws yields the widest confidence
interval (roughly -4 to +4 percent using 1,000 draws). Halton and Sobol sequences
perform quite well, while MLHS is mainly performing better than using PMC
draws for small R and but less well with higher R. The single line for the
Gauss-Hermite approximation in the figure can be regarded as the 100 percent
confidence interval. Clearly, the Gauss-Hermite approximation outperforms all
other methods for any given number of draws.

In Table 5 and Table 6, the 95 percent confidence intervals (from low to high)
of the deviations are indicated for PMC, MLHS, Halton, and Sobol sequences
for different numbers of draws R, while the deterministic deviations from Gauss-
Hermite are indicated in the last column. As the number of draws for Gauss-
Hermite in general does not match the number of draws from the other methods,
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Figure 1: Confidence intervals for deviation of the true Db-error of design D3

feasible values of R that are closest to the number of draws for the other methods
are shown.

Comparing Table 5 and Table 6, larger standard deviations result in greater
difficulty in approximating the Db-error than smaller standard deviations. Only
a few draws are needed in order to have the 95 percent confidence interval of the
deviation within ±1 percent. Even though the PMC method is outperformed
by all other methods (particularly by Gauss-Hermite) in the case of small stan-
dard deviations, it can be concluded that choosing an appropriate approximation
method is of particular importance in cases where the standard deviations are
larger, making it more difficult to compute the Db-error. As such, we will focus
mainly on the results dealing with large standard deviations in the priors.

As expected, Gauss-Hermite is preferred in designs with lower dimensions
(designs D1 and D2 have 2 and 4 random priors, respectively) as indicated in
Table 6, where even with small numbers of draws, the true Db-error is accurately
reproduced. In designs with higher dimensions (design D3–D6 have 6, 8, 10, and
12 random priors, respectively) Gauss-Hermite has slightly more problems with
computing the Db-error, but still performs well. This result is somewhat surpris-
ing as some researchers have found in the past that Gauss-Hermite typically only
works well with very low dimensions (1, 2, or 3) due to the exponentially growing
number of draws needed (Bhat 2001). However, in this paper we use a smarter
approach (which we will term incremental Gaussian quadrature) in which not all

113



Bliemer et al., Journal of Choice Modelling, 1(1), 2008, 98-126

Table 5: Confidence intervals for true Db-error (in %), α = 0.1

PMC MLHS Halton Sobol Gauss

design R low high low high low high low high R -

D1 40 -1.59 1.55 -0.44 0.43 -0.64 0.57 -0.57 0.56 36 0.00
100 -1.04 0.94 -0.18 0.18 -0.29 0.24 -0.27 0.23 100 0.00
200 -0.73 0.73 -0.12 0.11 -0.15 0.10 -0.17 0.12 196 0.00
500 -0.39 0.39 -0.04 0.06 -0.07 0.04 -0.07 0.05 506 0.00
1000 -0.26 0.31 -0.02 0.02 -0.04 0.03 -0.04 0.03 992 0.00
2000 -0.18 0.22 -0.02 0.02 -0.02 0.01 -0.02 0.02 1980 0.00

D2 40 -1.50 1.59 -0.85 0.98 -0.79 0.83 -0.81 0.83 36 0.00
100 -0.79 0.91 -0.40 0.48 -0.42 0.36 -0.44 0.41 108 0.00
200 -0.54 0.67 -0.35 0.36 -0.25 0.23 -0.32 0.32 192 0.00
500 -0.38 0.41 -0.22 0.23 -0.14 0.15 -0.16 0.15 500 0.00
1000 -0.26 0.27 -0.15 0.13 -0.08 0.08 -0.08 0.06 1080 0.00
2000 -0.16 0.17 -0.12 0.11 -0.04 0.04 -0.04 0.04 2058 0.00
5000 -0.14 0.14 -0.06 0.08 -0.02 0.02 -0.02 0.03 5184 0.00
10000 -0.08 0.10 -0.06 0.05 -0.02 0.02 -0.02 0.02 10000 0.00

D3 40 -1.67 1.59 -0.98 1.01 -1.05 1.24 -1.06 0.89 32 -1.86
100 -1.06 0.93 -0.48 0.60 -0.56 0.57 -0.55 0.48 96 -0.01
200 -0.68 0.69 -0.40 0.36 -0.32 0.33 -0.38 0.34 216 -0.01
500 -0.43 0.41 -0.26 0.25 -0.17 0.18 -0.17 0.14 486 -0.01
1000 -0.30 0.28 -0.18 0.19 -0.10 0.11 -0.11 0.10 972 0.00
2000 -0.22 0.21 -0.16 0.13 -0.05 0.07 -0.07 0.07 1728 0.00
5000 -0.14 0.11 -0.09 0.08 -0.03 0.03 -0.03 0.03 5120 0.00
10000 -0.11 0.10 -0.05 0.07 -0.01 0.02 -0.02 0.02 10000 0.00

D4 40 -2.13 2.59 -1.57 1.77 -1.47 1.53 -1.95 1.46 32 -2.42
100 -1.20 1.32 -0.83 0.80 -0.92 1.07 -0.91 0.77 128 -1.98
200 -0.79 0.89 -0.76 0.71 -0.52 0.60 -0.52 0.46 256 0.00
500 -0.64 0.62 -0.47 0.44 -0.24 0.31 -0.26 0.23 576 0.00
1000 -0.41 0.36 -0.30 0.27 -0.14 0.20 -0.14 0.15 864 -0.01
2000 -0.32 0.32 -0.21 0.20 -0.10 0.12 -0.12 0.11 1944 -0.01
5000 -0.21 0.15 -0.14 0.12 -0.05 0.05 -0.05 0.05 4374 0.00
10000 -0.16 0.12 -0.09 0.09 -0.03 0.03 -0.03 0.03 11664 0.00
20000 -0.11 0.09 -0.04 0.06 -0.02 0.02 -0.02 0.02 20736 0.00

D5 40 -1.96 2.31 -0.77 0.63 -1.93 1.62 -1.29 1.14 32 -0.48
100 -1.44 1.56 -0.46 0.44 -0.85 0.82 -0.56 0.45 128 -0.13
200 -1.30 1.17 -0.27 0.25 -0.49 0.43 -0.31 0.27 256 -0.05
500 -0.79 0.67 -0.13 0.12 -0.21 0.22 -0.15 0.09 512 -0.03
1000 -0.59 0.46 -0.09 0.09 -0.11 0.12 -0.09 0.08 1024 -0.03
2000 -0.39 0.38 -0.08 0.07 -0.07 0.08 -0.03 0.03 2304 0.01
5000 -0.22 0.22 -0.03 0.04 -0.04 0.04 -0.02 0.02 5184 0.00
10000 -0.20 0.16 -0.03 0.03 -0.02 0.02 -0.01 0.01 11664 0.00
20000 -0.16 0.15 -0.02 0.02 -0.01 0.01 -0.01 0.01 17496 0.00
40000 -0.11 0.10 -0.01 0.01 -0.01 0.01 -0.01 0.01 39366 0.00

D6 40 -1.15 1.11 -0.33 0.39 -0.94 0.90 -0.60 0.57 32 -0.29
100 -0.68 0.82 -0.21 0.22 -0.51 0.44 -0.36 0.29 128 -0.18
200 -0.58 0.64 -0.14 0.14 -0.35 0.27 -0.23 0.23 256 -0.14
500 -0.31 0.32 -0.10 0.10 -0.19 0.17 -0.06 0.08 512 -0.02
1000 -0.27 0.18 -0.07 0.06 -0.06 0.05 -0.05 0.06 1024 -0.01
2000 -0.20 0.17 -0.04 0.04 -0.03 0.03 -0.05 0.06 2048 0.01
5000 -0.13 0.09 -0.03 0.04 -0.02 0.01 -0.02 0.02 4096 0.00
10000 -0.07 0.07 -0.02 0.02 -0.01 0.01 -0.01 0.01 9216 0.00
20000 -0.04 0.05 -0.02 0.02 -0.01 0.01 -0.01 0.01 20736 0.00
40000 -0.03 0.04 -0.01 0.01 0.00 0.00 0.00 0.01 46656 0.00
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Table 6: Confidence intervals for true Db-error (in %), α = 0.3

PMC MLHS Halton Sobol Gauss

design R low high low high low high low high R -

D1 40 -5.04 5.14 -1.16 1.55 -1.91 1.77 -1.92 1.91 36 0.00
100 -3.43 3.22 -0.76 0.74 -0.88 0.73 -0.88 0.71 100 0.00
200 -2.27 2.31 -0.44 0.45 -0.50 0.36 -0.55 0.43 196 0.00
500 -1.21 1.22 -0.26 0.25 -0.23 0.15 -0.24 0.18 506 0.00
1000 -0.86 1.02 -0.18 0.17 -0.14 0.10 -0.12 0.11 992 0.00
2000 -0.58 0.73 -0.09 0.09 -0.06 0.06 -0.07 0.06 1980 0.00

D2 40 -16.23 17.39 -9.64 9.93 -11.89 12.92 -9.96 9.95 36 -0.33
100 -7.94 9.75 -5.97 6.36 -5.83 6.00 -5.43 4.59 108 -0.04
200 -5.27 6.96 -4.54 4.51 -3.57 3.21 -3.98 3.72 192 -0.02
500 -4.04 4.39 -2.62 2.56 -2.27 2.34 -2.35 1.85 500 0.00
1000 -3.04 3.16 -2.12 2.27 -1.43 1.20 -1.25 0.89 1080 0.00
2000 -2.00 1.96 -1.37 1.25 -0.81 0.75 -0.76 0.75 2058 0.00
5000 -1.44 1.52 -0.91 0.78 -0.45 0.51 -0.48 0.47 5184 0.00
10000 -0.92 1.12 -0.58 0.66 -0.31 0.27 -0.35 0.31 10000 0.00

D3 40 -11.22 10.72 -7.62 6.75 -7.84 8.81 -7.85 6.33 32 -12.21
100 -7.23 6.13 -4.64 5.66 -4.39 4.56 -4.39 3.74 96 -0.21
200 -5.00 4.83 -3.37 3.56 -2.83 3.01 -3.04 2.55 216 -0.19
500 -3.18 3.00 -2.23 2.01 -1.68 1.77 -1.52 1.07 486 -0.14
1000 -2.10 1.79 -1.37 1.40 -0.92 0.99 -1.02 0.75 972 -0.14
2000 -1.58 1.36 -0.89 0.80 -0.51 0.60 -0.65 0.55 1728 -0.14
5000 -1.00 0.69 -0.66 0.53 -0.33 0.31 -0.35 0.26 5120 -0.02
10000 -0.82 0.67 -0.46 0.36 -0.18 0.16 -0.25 0.19 10000 -0.02

D4 40 -19.41 24.28 -16.32 16.94 -19.81 19.28 -18.87 13.95 32 -17.26
100 -11.35 13.30 -10.50 10.68 -12.82 15.46 -10.37 8.82 128 -15.32
200 -9.02 10.37 -7.67 5.97 -7.23 8.95 -6.41 5.12 256 -2.11
500 -6.62 6.16 -5.10 5.30 -3.67 4.21 -4.00 3.24 576 -0.72
1000 -4.49 3.62 -3.22 2.95 -2.46 2.95 -2.37 2.40 864 -0.65
2000 -3.27 3.10 -2.49 1.79 -1.67 1.68 -2.02 1.77 1944 -0.63
5000 -2.07 1.44 -1.22 1.20 -0.93 0.83 -0.87 0.67 4374 -0.60
10000 -1.44 1.01 -1.19 0.99 -0.59 0.46 -0.48 0.43 11664 -0.06
20000 -1.20 0.95 -0.68 0.66 -0.46 0.25 -0.42 0.27 20736 -0.06

D5 40 -11.90 11.36 -5.13 4.84 -10.36 9.07 -7.66 7.00 32 -2.37
100 -9.07 8.92 -3.54 3.54 -4.14 4.22 -3.69 2.96 128 -1.93
200 -6.67 5.64 -2.78 2.50 -2.68 2.18 -2.04 1.64 256 -1.74
500 -4.11 3.42 -1.46 1.37 -1.51 1.69 -1.29 0.92 512 -1.70
1000 -2.89 2.40 -1.08 1.03 -0.77 0.95 -1.11 0.90 1024 -1.64
2000 -1.88 1.75 -0.86 0.59 -0.59 0.67 -0.42 0.33 2304 -0.07
5000 -1.20 1.02 -0.45 0.40 -0.31 0.31 -0.32 0.22 5184 -0.02
10000 -1.02 0.83 -0.36 0.31 -0.19 0.18 -0.20 0.16 11664 -0.01
20000 -0.78 0.73 -0.23 0.24 -0.13 0.09 -0.16 0.10 17496 -0.01
40000 -0.53 0.48 -0.12 0.13 -0.08 0.05 -0.12 0.07 39366 -0.01

D6 40 -7.10 7.16 -3.30 4.27 -4.97 6.24 -4.35 4.54 32 -2.07
100 -3.65 4.62 -1.85 2.27 -2.82 3.19 -2.94 3.17 128 -1.33
200 -3.11 3.90 -1.19 2.08 -1.65 1.99 -1.92 2.65 256 -0.96
500 -1.85 2.51 -0.51 0.81 -0.75 1.25 -0.45 1.09 512 -0.04
1000 -1.63 1.60 -0.44 0.82 -0.26 0.81 -0.26 0.88 1024 -0.02
2000 -1.07 1.42 -0.22 0.64 0.06 0.45 -0.18 0.81 2048 -0.15
5000 -0.58 0.83 0.07 0.45 0.11 0.39 0.07 0.46 4096 -0.16
10000 -0.24 0.74 0.12 0.48 0.15 0.35 0.15 0.38 9216 -0.02
20000 -0.06 0.58 0.13 0.36 0.20 0.33 0.19 0.32 20736 0.00
40000 0.01 0.55 0.17 0.36 0.23 0.30 0.21 0.30 46656 0.00
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priors are given the same number of abscissas, which significantly reduces the
number of draws needed for higher-dimensional problems. Overall, our findings
suggest that Gauss-Hermite outperforms the other methods considered within
this paper. However, it is worth noting that, mainly with designs D3 and D4, the
Gauss-Hermite method has difficulties when a small number of draws (R<100)
is used. This is due to the fact that with a small number of draws, the Gauss-
Hermite method is unable to pick up enough variance in the prior parameters.
Nevertheless, it performs well with more draws.

Halton and Sobol sequences perform similarly, clearly outperforming PMC
draws. It is interesting to note that in all designs, MLHS performs well compared
to the PMC method and similar to using Halton and Sobol sequences when low
numbers of draws are used. However, whenever the number of draws increases,
the Db-error from MLHS does not converge as rapidly to the true value as Halton
and Sobol do. This may be explained by the way the sequences are constructed.
PMC draws lacks both a uniform spread of the integration area and structure
between the draws in different dimensions, which were properties that have a
positive effect on the accuracy of the approximation (see Section 3). MLHS has
a uniform spread by definition, but structure between draws is removed as much
as possible by randomizing the order of the draws in each dimension. Halton and
Sobol sequences are less uniform in their spread (particularly with low number
of draws), but the systematic structure between the dimensions has a positive
effect on the outcomes (at least for smaller dimensions). With small R, MLHS
produces more uniform sequences than Halton or Sobol sequences. However, with
larger R this uniformity plays less of a role and the importance of the systematic
structure between the sequences may become more important.

Rather than looking at the percentage deviation from the true Db-error for
different numbers of draws, we can consider the reverse by looking at the number
of draws needed in order to ensure (with 95 percent certainty; and 100 percent
certainty in case of Gauss-Hermite) that the deviation is not more than a certain
percentage. The results are shown in Table 7, where the numbers of draws have
been determined by inverting the lines in Figure 1 (and using linear interpolation).

With small standard deviations (α = 0.1), the number of draws required to
be within one percent from the true Db-error is typically not larger than 100 for
all designs. However, in the case where the prior parameter distributions are
assumed to have large standard deviations (α = 0.3), a much larger number of
draws is necessary. Compare the outcomes for design D1 using large standard
deviations. If one would like to be with 95 percent probability within 0.5 percent
from the true Db-error, more than 2,000 PMC draws are needed, while using
MLHS, Halton, and Sobol sequences only require 139, 204, and 252, respectively.
Moreover, Gauss-Hermite approximation needs only four draws (two abscissas
per prior parameter) to be within that 0.5 percent. This pattern repeats itself
for other designs. For example, for design D2, the PMC method and MLHS need
more than 10,000 draws to be within the 0.5 percent range, Halton and Sobol
require almost 4,000 and 5,000, respectively, while Gauss-Hermite requires only 36
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Table 7: Number of draws for different allowed maximum deviations

Design 1, α = 0.1 Design 1, α = 0.3
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss

5% <20 <20 <20 <20 1 45 <20 <20 <20 1
4% <20 <20 <20 <20 1 73 <20 <20 <20 2
3% <20 <20 <20 <20 1 126 <20 27 27 4
2% 26 <20 <20 <20 1 242 29 39 39 4
1% 111 <20 26 22 1 1,033 74 78 85 4

0.5% 352 37 52 51 2 >2,000 139 204 252 4

Design 2, α = 0.1 Design 2, α = 0.3
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss

5% <20 <20 <20 <20 1 294 116 115 110 16
4% <20 <20 <20 <20 1 577 293 150 199 16
3% <20 <20 <20 <20 2 1,115 348 288 327 24
2% 21 <20 <20 <20 2 2,016 1,400 645 629 24
1% 89 39 33 32 4 >10,000 4,543 1,592 1,389 24

0.5% 293 85 88 83 8 >10,000 >10,000 3,947 4,810 36

Design 3, α = 0.1 Design 3, α = 0.3
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss

5% <20 <20 <20 <20 2 200 112 76 86 64
4% <20 <20 <20 <20 2 297 161 121 115 64
3% <20 <20 <20 <20 4 539 275 158 204 64
2% 31 <20 <20 <20 32 1,415 647 420 351 64
1% 106 64 56 44 64 4,987 1,943 997 1,247 64

0.5% 367 154 119 111 64 >10,000 8,956 2,594 2,825 64

Design 4, α = 0.1 Design 4, α = 0.3
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss

5% <20 <20 <20 <20 4 871 441 390 320 256
4% <20 <20 <20 <20 4 1,171 581 657 499 256
3% 34 <20 <20 <20 8 2,398 1,087 984 769 256
2% 65 32 <20 27 128 6,342 2,676 1,703 2,034 384
1% 179 85 106 89 256 >20,000 11,525 4,749 4,278 384

0.5% 691 270 243 210 256 >20,000 >20,000 14,343 9,758 6,561

Design 5, α = 0.1 Design 5, α = 0.3
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss

5% <20 <20 <20 <20 1 300 48 86 79 16
4% <20 <20 <20 <20 1 540 75 107 95 16
3% 24 <20 <20 <20 16 970 144 186 138 16
2% 59 <20 37 <20 32 1,696 233 419 220 128
1% 278 35 83 57 32 8,634 1,096 954 1,076 1,536

0.5% 1,392 88 193 112 32 >40,000 4,604 2,820 1,624 1,536

Design 6, α = 0.1 Design 6, α = 0.3
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss

5% <20 <20 <20 <20 1 87 36 67 33 8
4% <20 <20 <20 <20 1 187 45 85 55 8
3% <20 <20 <20 <20 1 401 91 105 114 8
2% <20 <20 26 <20 2 656 145 139 290 64
1% 57 <20 39 <20 2 4,192 481 768 860 256

0.5% 294 34 102 60 8 >40,000 4,452 1,888 4,129 512
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draws. As expected, in higher dimensions, Gauss-Hermite requires significantly
more draws, but still fewer than when using the other methods. For example, in
design D5, the PMC method requires more than 40,000 draws, MLHS, Halton,
and Sobol require approximately 4,600, 2,800, and 1,600, respectively, whilst
Gauss-Hermite requires approx. 1,500 draws.

Nevertheless, it is to be expected that Gauss-Hermite approximation in larger
models with more than 10 random prior parameters (as in model M6) will need
significantly more draws, which may become prohibitive. It should be pointed
out however, that the other methods may require more draws as well, meaning
that choosing for Halton or Sobol sequences may not necessarily provide better
results than Gauss-Hermite draws with the same number of draws. Nonetheless,
the number of draws in Gauss-Hermite approximation is dictated by the product
of the prior abscissas and choosing a small value may therefore be impossible
in a large design. In that case, there is always the option of using Halton or
Sobol sequences, as the number of draws can be selected arbitrarily, although
one should realize that the approximated Db-error may deviate largely from the
true value.

5 Conclusions and discussion

This paper compares the performance of PMC draws to several types of quasi
random Monte Carlo draws, as well as to a single Gaussian quadrature method,
when using Bayesian methods to generate efficient SC designs. The quasi random
Monte Carlo draws include Halton sequences, Sobol sequences and MLHS whilst
the Gaussian quadrature method examined is Gauss-Hermite. Performance com-
parisons are made for six SC designs with various design dimensions (attributes
and alternatives) as well as over different assumptions regarding the standard
deviations of the prior parameter distributions. In all but a few cases involving
an extremely small number of draws, Gauss-Hermite approximation appears to
outperform all other methods in reproducing the true level of a design’s level of
efficiency, whilst the PMC method appears to perform worst in nearly all cases.
When the standard deviations of the prior parameter distributions are relatively
small (i.e., the researcher is more certain about the true parameter value), draws
from Halton, Sobol and MLHS appear to perform equally well. However, with
larger standard deviations in the prior parameter distributions and as the dimen-
sion of the problem increases, the performance of MLHS is slightly worse than
both Halton and Sobol sequences. Furthermore, all approximation methods need
more draws if the standard deviations of the priors are larger.

Our findings raise concern regarding the predominant use within the literature
of PMC draws to generate Bayesian efficient SC designs. Our findings suggest
that designs generated using PMC methods are unlikely to be truly efficient8 un-

8As Kessels et al. (in press) mentions, when searching for an efficient design, preserving
ranking of the designs is more important than the exact value of the Bayesian efficiency. They
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der the assumptions made by the researcher (that is the population moments of
the prior parameter distributions) unless an impractically large number of draws
are used. The results of this paper suggest that whilst quasi random Monte Carlo
methods perform much better than the PMC method, better approximation to
the true level of efficiency of a design may be achieved using Gaussian quadra-
ture methods. This result conflicts with evidence offered in other areas using
simulation methods (mainly in estimating the random parameters in mixed logit
models) which suggest that Halton draws outperform Gauss-Hermite approxima-
tions (Bhat, 2001) in obtaining more correct results. In this paper, we have used
an incremental Gauss-Hermite approximation, which is a more intelligent tech-
nique than used elsewhere in determining how many draws to use, which may
partly explain these conflicting results.

Of course, as we have noted on several occasions, as the dimension of the prob-
lem increases, so does the number of draws required when using Gauss-Hermite
approximations. Unlike with other methods, this cannot be avoided. That is,
whilst the researcher can determine the number of draws to employ when using
PMC or quasi random Monte Carlo methods, thus accepting a lower level of accu-
racy in return for lower computational cost, the number of draws required when
using Gaussian quadrature methods is determined by the number of abscissas
for a given design. Whilst the number of draws may be reduced using the incre-
mental method such as proposed in this paper, there still remains a minimum
number of draws that must be used when employing Gaussian quadrature meth-
ods. No such limits exist for the other methods. It appears however, that for a
given level of accuracy involving designs with large numbers of dimensions, the
number of draws required when using Gaussian quadrature methods represents
the minimum number of draws, independent of the type of draws taken. As such,
whilst the researcher may rely on fewer draws when using say Halton draws, the
reduction in the number of draws comes at the price of less accurate results.

One limitation within the research presented here is that we have only exam-
ined the case of Bayesian efficient designs assuming the multinomial logit model
form. The theory presented in this paper is still valid for other discrete choice
models (such as nested logit and mixed logit). Whilst we would expect the results
to hold for these other models, this is still to be confirmed. An interesting case to
examine is the mixed logit model, whereby simulation is required not only for the
Bayesian prior distributions, but also the random parameter distributions as well.
Sándor and Wedel (2002, 2005) do report results for Bayesian efficient designs
developed using mixed logit models, adopting a quasi random Monte Carlo ap-
proach; orthogonal array-based Latin hypercube sampling, and randomly shifted
good lattice points, respectively. They report in a footnote (Sándor and Wedel
2005) that some exploration of the number of draws was undertaken but we call

illustrate with a test case that ranking can be more or less preserved using small numbers of
draws. Although this may not hold in general, it seems an interesting way of speeding up the
search process.
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for a more structured examination of the issue, similar to that presented here.
Additionally, the analyses presented only consider Normal distributions for

the prior parameters. Additional research is required to investigate the impact
of the different approximation methods when other probability distributions are
assumed.
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A Deriving the asymptotic (co)variance matrix

Consider an experimental design with alternatives (indexed by j) with associated
attributes (indexed by k). In each choice situation s, we assume that the levels of
the attributes are given by xjks. Let the utility of alternative j in choice situations
be given by

Ujs = Vjs + εjs, (13)

where Vjs denotes the systematic (sometimes called observed) part of the utility
and εjsdenotes the random (unobserved) part.

Denote the complete experimental design by X ≡ [xjks]. Let the observed
utility of alternative j in choice situation s be given by

Vjs(X|b) =
∑
k∈Kj

bkxjks, (14)

where b ≡ [bk] denotes the vector of attribute weights, which are typically the
unknown parameters to be estimated. Depending on the set of attributes appear-
ing in each alternative Kj , both generic and alternative-specific weights can be
present. In the generic case, parameter bk appears in multiple utility functions
of different alternatives, while in the alternative-specific case, the parameter only
appears in the corresponding alternative.

Let Pjs(X|b) denote the probability of choosing alternative j in choice situa-
tion s, and let yjs denote the outcome of the stated choice experiment based on
the experimental design (assuming a single respondent), where yjs equals one if
alternative j is chosen in choice situation s, and zero otherwise. The log-likelihood
function can be written as

logL(b|X) =
∑
s

∑
j

yjs log [Pjs(X|b)]. (15)
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Assuming that β are the true parameter values, the Fisher information matrix
can be written as

I(β|X) = −E
[
∂2 logL(β|X)

∂b∂b′

]
. (16)

The asymptotic variance-covariance (AVC) matrix can be computed as the inverse
of the Fisher information matrix:

Ω(β|X) = I−1(β|X). (17)

The probability Pjs(X|b) depends on the assumptions regarding the unobserved
components εjs. Different assumptions yield different models (see Train, 2003).
Only the probabilities differ (as well as how they are obtained) and as such the
theories presented within this paper therefore hold for each of these models.

B Experimental designs

The designs used in this paper are D-efficient designs9 using fixed priors created
using the Ngene10 software. As an example, the syntax for generating the design
for model M2 is given in Table 8. It generates a D-efficient design for the specified
MNL model with six choice situations. The prior parameter values are given
between brackets for each parameter b and the attribute levels are given between
brackets for each attribute x. Note that b1 and b2 are generic since they have
the same name in both utility functions for the two alternatives, while b0, b3
and b4 are alternative-specific. Tables 9 through 14 list the experimental designs
used for the analyses in the paper.

Table 8: Ngene syntax example

Design

;alts = alt1, alt2

;rows = 6

;eff = (mnl,d)

;model:

U(alt1) = b0[1.2] + b1[-0.09]*x1[10,20,30] + b2[-0.3]*x2[1,3,5] + b3[0.5]*x3[2,4,6] /

U(alt2) = b1*x1 + b2*x2 + b4[0.8]*x4[2,4,6]

$

9 Not necessarily D-optimal designs in the sense that it may not be possible to determine
the most efficient designs, but merely designs that are as efficient as possible.

10 Ngene is currently in prototype status and is being developed by Econometric Software.
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Table 9: Experimental design D1 (for model M1)

s x11 x12 x21 x22
1 20 3 10 1
2 20 1 20 3
3 30 5 30 1
4 30 1 10 5
5 10 3 20 3
6 10 5 30 5

D-error (α = 0)= 0.029186
Bayesian D-error (α = 0.1)= 0.029352, Bayesian D-error (α = 0.3)= 0.030671

Table 10: Experimental design D2 (for model M2)

s x11 x12 x13 x21 x22 x23
1 10 3 6 30 3 6
2 30 5 6 20 1 2
3 20 1 4 20 5 6
4 30 3 4 10 3 4
5 20 1 2 10 5 2
6 10 5 2 30 1 4

D-error (α = 0)= 0.093658
Bayesian D-error (α = 0.1)= 0.097006, Bayesian D-error (α = 0.3)= 0.132040
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Table 11: Experimental design D3 (for model M3)

s x11 x12 x13 x21 x22 x23 x31 x32 x33 x34
1 30 1 6 10 3 2 10 5 3 6
2 10 5 2 20 1 2 30 1 3 4
3 10 1 2 30 5 6 30 3 5 4
4 10 5 6 30 1 6 20 3 5 4
5 20 3 2 10 1 2 30 5 7 6
6 20 1 4 20 3 4 10 5 3 8
7 30 3 6 20 5 4 10 1 5 2
8 30 5 4 30 5 4 10 1 7 2
9 30 1 2 10 3 2 20 3 5 2

10 20 3 4 10 5 6 20 1 3 8
11 20 5 4 30 1 6 20 5 7 6
12 10 3 6 20 3 4 30 3 7 8

D-error (α = 0)= 0.056300
Bayesian D-error (α = 0.1)= 0.059608, Bayesian D-error (α = 0.3)= 0.086397

Table 12: Experimental design D4 (for model M4) ∗

s x11 x12 x13 x14 x21 x22 x23 x
(1)
24 x31 x32 x33 x34

1 20 5 4 7 10 1 2 1 30 3 3 8
2 10 3 4 4 30 1 6 0 10 5 5 4
3 10 5 2 7 30 5 4 1 10 1 3 4
4 30 1 6 4 20 5 4 0 20 1 7 2
5 10 3 2 7 20 3 2 0 30 3 7 6
6 20 1 2 10 10 5 6 0 30 3 5 6
7 30 5 4 7 10 3 2 1 20 1 7 2
8 30 3 6 10 20 5 6 1 20 1 3 6
9 20 3 4 10 30 1 6 1 10 5 7 8

10 30 5 6 10 10 1 4 0 20 3 5 4
11 10 1 6 4 30 3 4 1 30 5 5 8
12 20 1 2 4 20 3 2 0 10 5 3 2

D-error (α = 0) = 0.096534
Bayesian D-error (α = 0.1)= 0.10423, Bayesian D-error (α = 0.3)= 0.17769

∗ Attribute x24 is dummy-coded with 2 levels.
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Table 13: Experimental design D5 (for model M5) ∗

s x11 x12 x14 x
(1)
15 x

(2)
15 x21 x22 x

(1)
25 x

(2)
25 x

(1)
26 x31 x32 x33 x

(1)
35

1 10 5 7 0 0 20 1 0 0 1 10 5 5 0
2 10 3 4 0 1 30 5 1 0 0 30 3 7 0
3 20 1 10 0 0 10 3 0 0 1 20 3 5 1
4 30 5 4 1 0 30 1 0 1 0 10 5 3 0
5 20 3 4 0 1 30 3 0 0 0 20 5 3 1
6 20 1 7 1 0 30 1 1 0 1 10 5 7 1
7 10 1 4 1 0 20 5 0 0 1 30 5 5 1
8 10 3 7 0 0 30 1 0 1 1 30 3 7 0
9 30 5 10 0 0 30 3 0 1 0 20 3 7 1

10 30 1 10 0 1 20 3 0 1 1 20 3 5 1
11 20 5 10 0 1 20 1 1 0 1 30 1 5 0
12 20 3 10 1 0 10 5 0 1 1 10 1 7 0
13 20 3 7 0 0 10 5 1 0 0 20 3 3 0
14 30 5 10 1 0 20 1 1 0 0 30 1 3 1
15 30 5 7 0 1 10 3 0 0 0 20 5 5 0
16 10 1 7 0 0 10 3 0 0 0 10 1 3 1
17 10 3 4 1 0 10 5 0 1 0 30 1 7 1
18 30 1 4 0 1 20 5 1 0 1 10 1 3 0

D-error (α = 0) = 0.28606
Bayesian D-error (α = 0.1)= 0.49787,Bayesian D-error (α = 0.3)= 0.63800

∗ Attributes x15 and x25 are dummy-coded with 3 levels, x26 and x35 with 2 levels.

Table 14: Experimental design D6 (for model M6) ∗

s x11 x12 x14 x
(1)
15 x

(2)
15 x16 x21 x22 x

(1)
25 x

(2)
25 x

(1)
26 x27 x28 x31 x32 x33 x

(1)
35 x36

1 10 3 10 0 0 5 10 3 1 0 1 5 1 10 1 7 1 10
2 20 5 7 0 1 10 10 3 0 1 1 5 2 10 1 5 1 10
3 20 3 7 0 0 5 20 1 0 1 0 10 3 10 5 3 1 5
4 20 3 7 1 0 10 10 5 1 0 1 15 1 20 1 7 0 5
5 10 5 4 0 0 5 10 3 0 0 0 5 1 10 3 3 0 15
6 10 3 10 0 0 15 20 1 0 1 1 15 1 30 3 5 0 10
7 10 3 4 0 1 15 20 5 1 0 1 15 2 30 3 5 1 5
8 20 1 4 0 1 15 30 3 0 1 0 15 2 20 5 3 1 15
9 20 1 4 0 1 10 30 5 1 0 0 5 3 30 3 7 0 10

10 30 1 10 1 0 15 30 5 0 1 1 5 2 20 1 5 0 15
11 10 5 4 0 1 10 20 3 0 0 1 15 3 30 3 7 0 5
12 30 1 7 1 0 15 30 1 0 0 0 10 2 20 5 3 1 15
13 30 3 7 1 0 5 30 1 1 0 0 15 2 10 5 5 1 5
14 30 5 10 0 0 5 10 1 0 1 0 5 1 10 5 7 0 10
15 10 1 4 1 0 10 20 3 0 0 1 10 3 30 1 3 1 15
16 30 5 10 0 1 10 10 1 0 0 0 10 3 30 5 7 1 10
17 30 5 10 1 0 5 30 5 1 0 1 10 3 20 1 5 0 15
18 20 1 7 0 0 15 20 5 0 0 0 10 1 20 3 3 0 5

D-error (α = 0) = 0.26361
Bayesian D-error (α = 0.1)= 0.27163,Bayesian D-error (α = 0.3)= 0.33554

∗ Attributes x14 and x25 are dummy-coded with 3 levels, x26 and x35 with 2 levels.
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