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Abstract

Good practice in experimental design is essential for choice experiments used in nonmarket valuation. We review the

practice of experimental design for choice experiments in environmental economics and we compare it with advances in

experimental design. We then evaluate the statistical efficiency of four different designs by means of Monte Carlo

experiments. Correct and incorrect specifications are investigated with gradually more precise information on the true

parameter values. The data generating process (DGP) is based on estimates from data of a real study. Results indicate that

D-efficient designs are promising, especially when based on Bayesian algorithms with informative prior. However, if good

quality a priori information is lacking, and if there is strong uncertainty about the real DGP—conditions which are quite

common in environmental valuation—then practitioners might be better off with shifted designs built from conventional

fractional factorial designs for linear models.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the last decade the use of discrete choice experiments (CEs) for the purpose of nonmarket valuation of
environmental goods has gained favor with many applied environmental economists. CEs are used when
policy outcomes may be usefully described in terms of attributes and the objective is to infer the value attached
to the respective attribute levels.1 Attributes could be relevant policy traits and typically include the policy cost
to the respondent.2 A CE then consists of selected subsets of all possible ‘profiles’ obtainable by combining
and varying attribute levels. Typically, respondents are asked to select the best from a set of alternatives
(the ‘choice set’), and to repeat this ‘choice task’ several times over the course of the interview, each time
choosing from a choice set with different alternatives.
e front matter r 2007 Elsevier Inc. All rights reserved.
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asis for the proposed term of ‘attribute-based stated preference’ method [34].

of describing a good on the basis of its attributes was born out of the theoretical approach of Lancaster’s [46,47]. It was

ployed in marketing by Green and Rao [27] who propose conjoint analysis as a tool to model consumer preference.
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Using the set of observed discrete choices, researchers can then estimate separate marginal values for each
attribute or attribute level used in describing the policy alternatives. In essence CEs are repeated referendum
contingent valuation responses where the choice situation requires the respondent to select from possibly two
or more policy situations, each succinctly described in terms of attributes and their levels. Willingness to pay
(WTP) estimates are typically derived assuming random utility maximization and their efficiency determines
how informative the study will be.

In a multiattribute multilevel context of choice the identification and efficiency of the estimates depends
crucially on the choice of experimental design (ED), i.e. how attributes and attributes levels are combined to
create alternatives in the choice sets to be presented to respondents. Ideally, the ED should be statistically
efficient, providing the maximum accuracy of the estimates for the unknown population parameters given the
available sample size. At the same time the ensuing choice tasks should require a relatively low cognitive effort
from respondents, so as not to impair respondents’ efficiency [66].

Yet, little work has been done to systematically evaluate the effect of various approaches to ED on the
quality of the estimates in environmental valuation.3 With few exceptions, in most published papers employing
CE for the purpose of valuation one finds scant information on the methodology employed to derive the ED,
or its statistical properties. The most common set of arguments seems to be something to the effect of
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The total number of combinations implied by the full factorial could not be employed, so a main effects
orthogonal fraction of such factorial was employed. Choice sets were then formed by blocking the resulting
set of profiles into n blocks.
Fractional factorial design is frequently used in marketing research with conjoint analysis which draws on
general linear-in-the-parameters models. CEs data, instead, are analyzed by means of specifications that are
highly nonlinear-in-the-parameters, usually of the multinomial logit (MNL) type. When estimating preference
parameters from CEs data, the high nonlinearity of the MNL specification affects the efficiency properties of
the maximum likelihood estimator. Hence, statistically efficient EDs for MNL specifications potentially differ
in most practical circumstances from those that are efficient in linear multivariate specifications. In particular,
in an MNL context the statistical efficiency of the ED will depend on the unknown values of the parameters,
as well as the unknown model specification.4

Empirical investigations of the type conducted by Carlsson and Martinsson [18] in a health economics
context are necessary to evaluate the rewards of efficient designs for nonlinear-in-the-parameter models. These
investigations should be tailored to the state of practice in environmental valuation, which is somewhat
different from that in health economics.5 This is what we set out to achieve with this paper. In doing so we also
extend the investigation to Bayesian designs which allow the researcher to account for uncertainty about the a

priori knowledge on the parameter values.
After reviewing recent advances in ED for logit models, it becomes apparent that the profession’s current

approach to ED can be improved upon. However, the gains afforded by such improvement need further
investigation. With this paper we contribute to the existing literature by exploring the empirical performance
of a number of recently proposed approaches to construct designs for discrete CEs. The investigation is
conducted by means of Monte Carlo experiments designed to focus on the finite sample size properties of
frequently employed logit estimators for value derivation in environmental valuation. In particular, we are
We note, though, that some results on the effect of choice set creation and some proposed measures of choice complexity have been

lished [21,19].

The concept of statistical efficiency is defined by different criteria of optimality, such as A- D- G- and V-optimality, which are intended

improve the precision of parameter estimates (variances and covariance matrices) or the prediction variance over the design region.

wever, the concept of D-optimality or, more appropriately, D-efficiency [45,7]—which is based on the minimization of the

iance–covariance matrix—has dominated the design literature for CEs because—despite being geared towards parameter estimation—

till performs well in prediction, and it is easier to obtain [42].

For example, health economists are basically concerned with a private good: health status, while environmental economists are

cerned with public goods. A review of the studies in health economics reveals that often choice sets only include two alternatives, while

nvironmental economics the most frequent format includes two experimentally designed alternatives plus the status quo (zero option).

e latter is included to avoid the undesirable effects associated with forced choice [22].
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concerned with measuring efficiency gains and the effects of model mis-specification under various EDs over a
range of commonly used sample sizes.

In Section 2 we provide a summary of the evolution of the knowledge on design construction for CEs. In
Section 3 we revise briefly the use of design construction techniques in the environmental economics literature
of CEs for the purpose of valuation. The methodology of our empirical investigation is explained in Section 4,
while in Section 5 we present and discuss the results. We draw our conclusions in Section 6.
2. What do we know about design construction for MNL?

A number of significant theoretical and empirical developments have taken place in the field of ED in recent
years, and in this paper we draw heavily on these [61,62,67–69,40,14,59,43,41,15]. ED techniques were first
introduced in the practice of multiattribute stated preference methods for market research by Louviere and
Woodworth [51] and Louviere and Hensher [50], who used the conventional factorial design, developed mostly
for the statistical analysis of treatment effects in agricultural and biological experiments, to derive and predict
choices or market shares. Through this approach they identify a set of product ‘profiles’ with well-known
statistical properties for general linear models. These profiles are basically synthetic goods described on the
basis of selected attributes whose levels are arranged in an orthogonal fashion. When profiles are too
numerous for evaluation in a single choice context they are divided into a ‘manageable’ series of choice sets
using different blocking techniques. This procedure guarantees that the attributes of the design are statistically
independent (i.e. uncorrelated). For some time orthogonality between the design attributes represented the
primary criterion in the generation process of fractional factorial designs.

Modifications to this basic approach were later brought about by the necessity of making profiles ‘realistic’
and ‘congruent’, with orthogonality no longer seen as a necessary property.6 Hence a good ED may be
nonorthogonal in its attribute levels and require the investigation of mixed effects and selected attribute
interactions, since in many realistic settings main-effects only may not be adequate (see, e.g. [52]).

Nonorthogonal designs can be optimized for linear multivariate models so as to maximize the amount of
information obtained from a design. However, it is not clear that these EDs, conceived for continuous
response variables, should be used in designing CEs, where the response is discrete and a highly nonlinear
specification is assumed to generate response probabilities.7 Fortunately, it appears that ‘yan efficient design
for linear models is also a good design for MNL for discrete choice response’ [45]. Corroborating evidence of
this is provided by Lazari and Anderson [48] and Kuhfeld et al. [45], and more recently by Lusk and Norwood
[52] who studied the small sample performance of commonly employed D-efficient EDs for linear-in-the-
parameters models in the context of logit models for CEs, focussing on the role of attribute interactions. By
relying on these empirical results one may conveniently ignore the necessity of deriving EDs specific for
nonlinear models, which would require assumptions on the unknown parameter vector.8

The effects of assigning the experimentally designed alternatives to individual choice sets were investigated
by Bunch et al. [13] who approached the issue of choice sets construction by proposing the object-based and
attribute-based strategies, which we employ later for one of our designs in Section 4. However, they
restrictively assumed the parameter vector of the indirect utility function b ¼ 0, which implies equiprobability
of alternative selection in each choice set. Under this assumption the optimization problem for the
determinant of the information matrix in discrete choice models remains the same as in a linear framework
[28], and obviously does not require any degree of knowledge or assumptions on the true population values of
b. Because of the b ¼ 0 assumption such designs take the name of D0-optimal or ‘utility-neutral’. They satisfy
the properties of orthogonality, minimum overlapping and balanced levels. Such properties, along with that of
6See also [59] on the effects of lack of orthogonality on ED efficiency, and how this can easily come about even when orthogonal designs

are employed.
7Linearly D-optimal designs can be obtained by specific software such as SPSS, MINITAB, Design Easy, etc. The most comprehensive

algorithms for CE design we know of are those in the free macro MktEx (pronounced ‘Mark Tex’ and requiring base SAS, SAS/STAT,

SAS/IML, an SAS/QC) [43,44]. CBC also provides algorithms for choice design, but only guided towards balancedness.
8Typically, in nonlinear-in-the-parameters models the information matrix (and hence the statistical efficiency of experimental design) is a

function of the (unknown) vector of the true model parameter or, equivalently, the true choice probabilities.
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Table 1

Approaches to experiment design for discrete choice experiments

Authors Criterion definition Assumed a priori parameters Algorithm

Lazari and Anderson [48] D-optimal — Unspecified

Kuhfeld et al. [45] D-optimal — Modified Fedorov

Bunch et al. [13] D0-optimal — —

Huber and Zwerina [36] Dp-optimal b0 RS

Zwerina et al. [74] Dp-optimal b0 Modified Fedorov

Sándor and Wedel [61] Db-optimal Nðbjb0;R0Þ RSC

Sándor and Wedel [62] Db-optimal Nðbjb0;R0Þ RSC

Kanninen [40] Ds-optimal — Sequential update

Burgess and Street [14] Dp-optimal b0 —

Kuhfeld [43] Dp-optimal bp Modified Fedorov

Kessels et al. [41] Db-optimal b�U ½a; b� Modified Fedorov

Burgess and Street [15] Dp-optimal b0 —

RS, relabeling and swapping; RSC, relabeling, swapping and cycling.
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balanced utility, are described in [36] where these are considered to be essential features in the derivation of
efficient EDs.

Huber and Zwerina [36] subsequently argued that in most practical research situations some kind of prior
knowledge is available (e.g. from the results of a pilot survey) and broke away from the b ¼ 0 assumption.
They championed—instead—the Dp-optimality criterion, where p stands for ‘point’ (i.e. local) information on
ba0. They demonstrated how restrictive it can be to assume b ¼ 0 as it induces efficiency loss, and verified
that including pre-test results into the development of efficient ED may improve efficiency up to 50%. Their
strategy to obtain a Dp-optimal ED is to start from a D0-optimal design as described in [13] and expanded
upon by Burgess and Street [14], and then improve its efficiency by means of heuristic algorithms. Not only is
the resulting ED more efficient under the correct a priori information, but it is also robust to some mis-
specifications. It is worth noting that this is a local optimum because it is based on a given vector of parameter
values.

In some later work [3] it is observed how at the ED construction stage of a study there typically exists
significant uncertainty about the a priori information on parameter values b and hence such uncertainty
should be explicitly accounted for in the ED construction. Hence a sequential Bayesian approach is proposed,
based on the estimates of b from some pilot study and deriving a final Db-optimal design using Bayes’
principle. Such Bayesian ED approaches are described in Atkinson and Donev [4] and in Chaloner and
Verdinelli [20], and they were first used in the CE literature by Sándor and Wedel [61] for MNL specifications
by modifying the empirical algorithms proposed by Huber and Zwerina [36]. This approach violates the
property of balanced utility but it produces more efficient designs. However, all these Bayesian designs are not
globally optimal because they are derived from a search that improves upon an initial fractional design, rather
than a search over the full factorial set.

Recent work by Burgess and Street has tackled the issue of construction of more general designs, such as
[67,14,68,15,70] but they are limited to the case of b ¼ 0. A comparison of criteria to derive efficient EDs is
illustrated in [42], in which the method by Zwerina et al. [74] is extended and a Db-optimal ED is obtained by
using a weakly informative (uniform) prior distribution of b.9

A short summary of the evolution of ED research is reported in Table 1 which includes the Dp-optimal
design proposed in [43] and the Ds-optimal design proposed in [40], which describes a sequential design for
discrete CEs. Notice that although in recent years the theoretical research work on efficient ED construction
for logit models has intensified (see also for more theoretical results) [25,26], it still remains mostly anchored to
the basic MNL model, whereas much of the cutting edge empirical research is based on mixed logit models of
some kind. For logit models with continuous mixing of parameters we found only two applied studies
9We prefer the term ‘weakly informative’ to the more common Bayesian term ‘uninformative’ because of the reasons spelled out in [23],

where it is noted that a uniform prior is not uninformative in this context.
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concerning ED: Sándor and Wedel [62] and Blemier et al. [8]. We found no study addressing the issue in the
context of discrete mixing (latent class models).

There are also few empirical evaluations of the different ways of deriving efficient EDs for MNL models in the
various fields of applications in economics, with the exception of [18,72] in health economics, [59] in
transportation and [52] in agricultural economics. In particular, Carlsson and Martinsson [18] use a set of Monte
Carlo experiments to investigate the empirical performance of four EDs (orthogonal, shifted, D0-optimal and
Dp-optimal) for pair-wise CE—the dominant form of choice set in health economics research. They assume that
the investigator correctly specifies the data generating process (DGP), the a priori b at the stage of decision about
the ED and at the estimation stage. Under these favorable conditions they find that fractional factorial main
effects orthogonal EDs are inferior to D0-optimal and Dp-optimal designs. This is an apparently worrying result
considering that this has been the dominant approach in environmental economics. They also find that the
shifted ED (also sometimes termed cycled) [13] performs better than the D0-optimal for generic attributes, but in
general the most efficient design is the Dp-optimal. Viney et al. [72], instead, focus on the effect of design on
cognitive effort as captured by the variance of the error component of utility. They report the following:

ythree experimental design approaches are investigated: a standard six-attribute, orthogonal main effects
design; a design that combines alternatives to achieve utility balance, ensuring no alternatives are
dominated; and a design that combines alternatives randomly. The different experimental designs did not
impact on the underlying parameter estimates, but imposing utility balance increases the random variability
of responses.

However, in both [18,72] the experimental conditions are quite restrictive, do not extend to Bayesian design
construction and are tailored to replicate features that are common in health economics, but relatively
uncommon in environmental economics.

In transportation modeling, instead, Rose and Bliemer [59] emphasized how the much sought-after property
of orthogonality may well be lost in the final data set due to the cumulative effects of sample nonresponse.
Furthermore, while the transportation literature on ED for choice modeling is often dominated by labeled
alternatives (one label per transportation mode, with relative label-specific attributes), the typical situation in
environmental valuation seems to be that of generic (unlabeled) alternatives.

Finally, on the issue of sequential design, Kanninen [40] drawing on an earlier CV idea [38] illustrates how
one can choose numerical attributes, such as price, to sequentially ensure the maximization of some measure
(e.g. the determinant) of the information matrix of binary and multinomial models from CE data. On the
other hand, Raghavarao and Wiley [55] show that with sequential design and computer-aided interviews it is
possible to include interaction effects and define Pareto-optimal choice sets. Both papers are particularly
interesting for future applications with computer-aided interview administration of CEs. Sequential designs,
however, are beyond the scope of this paper.

3. The state of practice in environmental economics

The adoption of CE in environmental economics began in the early 1990s, when research on ED for MNL
models was still at an embryonic stage. However, researchers concerned with discrete choice contingent
valuation were already aware of the importance of ED on the efficiency of welfare estimates [2,39,1]. This
concern does not seem to have carried over to CE practice, where the dominant approach, as visible from Table
2, has been that based on fractional factorials for main effects with orthogonality. This is typically derived using
algorithms developed for multivariate linear models, which are—as explained earlier—only a surrogate with
much scope for improvement that can be reached via more tailored designs. But under what conditions?

The prevailing approach to ED in environmental economics applications seems to involve the following
steps:

Step 1: Determine attributes and their levels.
Step 2: Determine ex ante the number of alternatives in the choice set and the number of choice situations

for each respondent.
Step 3: Define the combination of attribute and levels describing each alternative in each choice set based on

linear ED approaches.
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Table 2

Selected features of choice experiment studies in environmental economics

Authors Number Choice task Choice tasks Experimental Model Sampled

and paper of attributes alternatives per respondent design specification respondents

Boxall et al. [11] 6 2þ sq 16 — MNL 271

(EE) ð4422Þ

Hanley et al. [31] 4 2þ sq 4 — MNL 181

(ERE) ð23Þ

Rolfe et al. [57] 7 2þ sq 16 — MNL 105

(EE) ð8146Þ

Carlsson and Martinsson [17] 3 2 14 D-optimal EVHL 350

(JEEM) ð33Þ Zwerina et al. [74]

Boxall and Adamowicz [10] 5 5þ sq 8 Orthogonal main effects LC 620

(ERE) ð45Þ RPL

Blamey et al. [6] 6 2þ sq 4=8 MNL NL 480

(ERE) ð443151Þ 4þ 1 Fractional factorial LC 620

DeShazo and Fermo [21] 4=9 2=7 — Factorial orthogonal Heteroskedastic 1800=2100
(JEEM) randomised MNL

Sælensminde [60] 3=4 2 9 Fractional factorial Binary 2568

(ERE) orthogonal Logit

Hanley et al. [32] 6 2þ sq 4=8 Fractional factorial MNL NL 267

(ERE) ð442161Þ

Foster and Mourato[24] 5 2þ sq Fractional factorial MNL RPL 290

(ERE) (SPEED software)

Horne and Petäjistö [35] 5 2þ sq 4=8 Fractional factorial MNL 1296

(LE) ð4421Þ

Scarpa et al. [65] 5 2þ sq 6 Fractional factorial MNLþHeterosk: 300

(EE) ð332241Þ RPL

7 Fractional factorial MNL

Carlsson et al. [16] ð253141Þ 2þ sq 4 D-optimal RPL 5800

(EE) OPTEX (SAS)

D-optimal design MNL

Rodrı̀guez and Leòn [56] 6 2þ sq 8 Huber and Zwerina RPL 350

(ERE) ð324222Þ [36] EVHL

Wattage et al. [73] 3 16 — Orthogonal main effects MNL 30

(EE) ð3241Þ

Jin et al. [37] 3 1þ sq 8 Main effects MNL 260

(EE) ð2341Þ factorial design

MNL, Multinomial logit; EVHL, Extreme value heteroskedastic logit; RPL, Random parameter; NL, Nested logit; LC, Latent class;

JEEM, Journal of Environmental Economics and Management; (LE), Land Economics; ERE, Environmental and Resource Economics;

EE, Ecological Economics.
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Step 4: Assign the profiles so derived to choice sets either randomly or with different combinatorial devices.
Generally, attributes and levels are selected on the basis of both the objective of the study and information

gathered from focus groups. The number of choice sets each respondent is asked to evaluate ranges from 4 to
16 and the number of alternatives in each choice set from 2 to 7. The most frequent choice set composition
(see Table 2) is that of two alternatives and the status quo ð2þ sqÞ, where typically the sq is added to ED
alternatives, rather than being built into the overall design efficiency. The allocation of alternatives in the
single choice set is either randomized or follows the method in [13]. Only in a few environmental economics
studies [16,56] is the criterion of maximizing the determinant of the information matrix of the MNL the
guiding principle for the derivation of the ED.

From our review of the literature, we draw the following observations:
1.
 In the practice of CE design the profession continues to use orthogonal main effects designs for linear
models rather than replacing them with D-optimal designs for logit models. This may be due to a lack of
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appreciation for the efficiency gains derivable from D-optimal designs, and the robustness of these gains to
mis-specification. Hence, it is of interest to empirically evaluate both the size of such expected gains and
their robustness in a typical environmental valuation context.
2.
 Amongst the various D-optimal design algorithms the only ones that have been employed so far are those
for MNL specifications with a fixed a priori parameter ðb ¼ bpÞ. This is probably due to the fact that for
these EDs are well documented and predefined macros are available in SAS [43]. On the other hand, for
Bayesian EDs no pre-packaged software procedures seem to be available and the researcher needs to code
the algorithm for each context of study, which requires considerable effort and time commitment. It is
therefore important to empirically investigate the gains in efficiency achievable with these more elaborate
designs to be able to assess when it is worth employing them in the practice of environmental valuation.
3.
 The environmental valuation literature is dominated by the 2þ sq choice task format, which—as
demonstrated elsewhere in the literature (e.g. [29,30])—is prone to give rise to status quo bias, raising a
specific issue of interest to environmental economists. When such bias is present it is often inadequately
addressed by means of a simple inclusion of an alternative-specific constant in the MNL specification, and
it may require more flexible specifications based on mixed logit models [64]. Robustness of the efficiency
gains to common model mis-specifications when the design is developed on standard MNL assumptions is
therefore an important criterion in the evaluation of alternative approaches to ED. Tests for model
specification are only meaningful at reasonable sample sizes. So, while the researcher can resolve the issue
of specification when the sample data have become available, they must often decide on the features of the
ED at an earlier stage.
4.
 Finally, an empirical investigation should also explore which ED approach is most robust with regards to
the quality of a priori information and assumptions about the true values of b.

4. Methods

In our empirical investigation we compare four different ways of deriving an ED for discrete CEs for the
MNL specification. We report them here in order of growing complexity.10

4.1. The shifted design

We chose to employ a shifted (or cycled) design rather than the most common fractional factorial
orthogonal design (FFOD), which we felt has already been thoroughly assessed by Lusk and Norwood [52].
Furthermore, based on the results of [18], the shifted design seems to perform better than the FFOD, and to be
just as simple to derive. The shifted design is based on the implicit assumption of identical selection
probabilities across alternatives as implied by the assumed values of b ¼ 0. This approach was originally
proposed by Bunch et al. [13] who consider designs for general linear models and propose a procedure to
assign alternatives to choice sets. The work by Burgess and Street [14,15] shows how to shift attribute levels so
as to obtain optimal designs.

The basic ED is derived from a FFOD. Alternatives so derived are allocated to choice sets using attribute-

based strategies. Within this category we use a variant of the shifting technique whereby the alternatives
produced by the FFOD are used as seeds for each choice set. With this method one ‘shifts’ the original
columns of the FFOD in such a way that all attribute levels are varied. For example, in our case from an initial
FFOD (the seed) all attribute levels were shifted (increased) by one unit, except those already at the highest
level, which were assigned the lowest values in the ladder of levels. We refer to this ED as the ‘shifted’ design.
The codified design used in the Monte Carlo experiments is reported in Table 3.

4.2. Dp-optimal design

In practice, the a priori information typically suggests ba0. In this case, potentially more efficient designs
than the shifted one can be obtained by making use of such information on the values of b. This can be done
0The necessary Gauss codes to replicate this study are available from the authors.
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Table 3

Shifted and Dp-optimal experiment designs

Choice set Alt Shifted Dp-optimal

Attributes

ML SW FT CH Cost ML SW FT CH Cost

1 I 1 1 1 1 1 2 2 1 3 2

II 2 2 2 2 2 1 1 3 1 1

2 I 1 2 2 2 1 2 2 3 3 2

II 2 3 3 3 2 1 1 1 2 1

3 I 1 3 3 3 1 1 1 3 3 2

II 2 1 1 1 2 3 3 2 1 1

4 I 2 1 1 1 2 1 2 2 2 1

II 2 2 2 3 1 2 1 3 1 2

5 I 2 2 2 3 1 2 1 2 3 1

II 3 3 3 1 2 3 2 1 1 2

6 I 2 3 3 1 1 1 3 1 2 2

II 3 1 1 2 2 3 1 2 1 1

7 I 3 1 2 1 1 3 2 1 3 1

II 1 2 3 2 2 2 3 3 2 2

8 I 3 2 3 2 1 1 3 3 1 1

II 1 3 1 3 2 3 1 1 2 2

9 I 3 3 1 3 1 3 2 3 3 1

II 1 1 2 1 2 2 3 2 1 2

10 I 1 1 3 3 2 1 1 2 1 1

II 2 2 1 1 1 3 3 3 2 2

11 I 1 2 1 1 2 2 1 1 2 1

II 2 3 2 2 1 3 2 2 1 2

12 I 1 3 2 2 2 1 1 3 1 2

II 2 1 3 3 1 2 3 2 3 1

13 I 2 1 2 3 2 2 1 1 1 1

II 3 2 3 1 1 1 2 2 2 2

14 I 2 2 3 1 2 1 1 2 3 2

II 3 3 1 2 1 2 2 1 1 1

15 I 2 3 1 2 2 3 1 2 2 2

II 3 1 2 3 1 1 2 3 3 1

16 I 3 1 3 2 2 1 3 1 1 2

II 1 2 1 3 1 3 1 3 2 1

17 I 3 2 1 3 2 2 1 2 3 2

II 1 3 2 1 1 3 3 3 2 1

18 I 3 3 2 1 2 1 1 1 3 1

II 1 1 3 2 1 2 2 3 2 1

Effective coding in the utility function was (1) (0 1), (2) (1 0), (3) (0 0).
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with a Dp-optimal design, derived by maximization the information provided in the arrangement of attributes
and attribute levels.

An obvious objective function in the context of maximum likelihood estimation can be based on the
information matrix for the design. Under the MNL model assumptions, this is given by

IðXjb;NÞ ¼ �E
q2 lnLðbÞ

qbqb0

� �
¼ N

XS

s¼1

X0sðPs � psp
0
sÞXs, (1)

where s denotes choice situations, N is the number of respondents, Xs ¼ ½X1s; . . . ;XJs�
0 denotes the choice

attribute matrix, ps ¼ ½p1s; . . . ; pJs�
0 denotes the vector of the choice probabilities for the jth alternative and

Ps ¼ diag½p1s; . . . ; pJs� with zero off diagonal elements and pjs ¼ embXj ð
PJ

i¼1e
mbxi Þ

�1.11
11As commonly done in these estimations the scale parameter m was normalized to 1 for identification.
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A widely accepted [45,61,42] scalar measure of efficiency in the context of EDs for models that are nonlinear
in the parameter is the D-criterion (or Dp-error), which is defined as

D�criterion ¼ fdet½I�1ðbÞ�g1=k, (2)

where k is the number of attributes. We employed the modified Federov algorithm proposed by Zwerina et al.
[74] to find the arrangement of the levels in the various attributes in X such that the D-criterion is minimized
(and the det½IðbÞ� maximized) when b ¼ bp. Such algorithms are available in the macro ‘%ChoicEff’, in SAS
v. 9 (see [43], for details) and the codified design used for the simulation is reported in Table 3.
4.3. Db-optimal designs

Bayesian designs explicitly account for the uncertainty of subjective a priori information on the values of the
population b. For Bayesian designs the criterion to minimize is the Db, which is the expected value of the
D-criterion with respect to its assumed distribution over b or pðbÞ:

Db�criterion ¼ Ebfdet½I
�1ðbÞ�1=kg ¼

Z
Rk

det½I�1ðbÞ�1=kpðbÞdb, (3)

where k is the number of attributes. In practice this is achieved by approximating via simulation the value of
Db: one draws R sets of values br from the a priori distribution pðbÞ and computes the average of the simulated
D-criterion over the R draws:

~Db ¼
1

R

XR

r¼1

det½I�1ðbÞ�1=k. (4)

Bayesian approaches always allow one to incorporate the information from the a priori distribution, and in
this application we compared two Db-optimal designs. One with a prior incorporating relatively poor
information and implemented by a uniform distribution [41]. The second with a more informative prior
implemented by means of a multivariate normal centered on the parameter estimates from the pilot study, and
with a variance–covariance matrix as estimated from the pilot [61].

While the Dp-optimal design ignores the uncertainty which invariably surrounds the values of b, the
Db-optimal design allows the researcher to explicitly account for it. On the other hand the derivation of
Bayesian designs is computationally more demanding, and perhaps explains why previous studies have
neglected them.
4.3.1. Db-optimal design with weakly informative prior

The distributional assumption about the prior in this case is that each of the k parameters is distributed i.i.d.
uniform with pðbkÞ ¼ U ½ak; bk� where ak and bk are the extreme values bounding the intervals within which the
true value of bk is expected to be. We refer to this design throughout the paper as Dw

b -optimal, where the
superscript w stands for weakly informative prior. We note that ak and bk can be chosen to incorporate
directional prior information from economic theory on the sign of parameters. For example, the coefficient on
money bm (the cost of a policy alternative) is expected to have a negative impact on utility, so for bm one may
set bm ¼ 0 and am equal to some negative number.
4.3.2. Db-optimal design with informative prior

Following [61] we assume the prior to be distributed pðbÞ ¼Nðb̂; X̂Þ. While [61] derive the b̂ and X̂ on the
basis of managers’ expectations, we derived them from real data obtained from the pilot study preceding the
field survey. Such data are commonly available in environmental valuation studies. The pilot data were in turn
obtained on the basis of a fractional factorial orthogonal main effects design. The search for efficiency over X
was implemented by using the RCS algorithm developed by Sándor and Wedel [61,62]. In what follows we
refer to this design as Di

b-optimal, where the superscript i stands for informative prior. The two codified
Bayesian designs used in the Monte Carlo study are reported in Table 4.
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4.4. Design of Monte Carlo experiment

To assess the difference between the alternative designs, we have drawn inspiration from a study about
WTP for four rural landscape components for a government programme designed to improve rural landscape.
The four components were mountain land (ML), stonewalls (SW), farmyard tidiness (FT) and cultural
heritage (CH) features [63]. In this CE study all the attributes were potentially improved by the proposed
policy with two degrees of intensity which we succinctly describe as ‘some action’ and ‘a lot of action’. In the
original study, respondents were given photographic representations of how such levels of improvement would
differ from each other and the status quo. The interested reader is referred to an extensive report available for
this study [54].

Based on the estimation results obtained from these data through MNL and Kernel logit (KL) with
alternative-specific constant models (Table 5), our Monte Carlo experiment is designed to investigate the
Table 4

Bayesian experiment designs

Choice set Alt Dw
b -optimal Di

b-optimal

Attributes

ML SW FT CH Cost ML SW FT CH Cost

1 I 2 2 2 2 1 2 3 3 3 1

II 1 1 1 1 2 3 2 1 2 2

2 I 1 2 2 1 2 2 3 1 2 1

II 2 1 1 3 1 1 2 2 3 2

3 I 2 1 2 1 2 1 2 1 3 2

II 1 2 1 2 1 3 3 3 1 1

4 I 2 2 2 1 1 1 3 2 2 2

II 3 3 1 3 2 3 1 3 3 1

5 I 2 3 2 2 1 3 3 1 3 1

II 3 1 1 1 2 2 1 3 2 2

6 I 2 2 1 1 2 1 3 2 3 2

II 1 1 2 2 1 2 2 1 1 1

7 I 2 3 1 1 2 3 2 2 1 2

II 1 2 3 2 1 1 3 1 2 1

8 I 2 2 1 2 1 2 3 2 1 1

II 1 3 2 1 2 1 2 3 3 2

9 I 1 2 3 3 1 3 2 3 1 1

II 3 3 1 2 2 2 3 1 2 2

10 I 2 1 1 2 1 1 2 3 2 1

II 3 2 3 3 2 2 1 2 3 2

11 I 3 1 2 3 2 3 3 1 3 1

II 1 3 1 2 1 1 2 2 1 2

12 I 1 2 1 1 2 1 3 3 2 1

II 3 1 2 2 1 2 2 1 1 2

13 I 3 2 3 1 2 3 1 3 3 2

II 1 1 2 3 1 1 3 2 1 1

14 I 2 3 3 3 2 2 2 3 1 2

II 3 2 2 1 1 3 1 2 2 1

15 I 1 1 3 1 1 3 2 1 2 2

II 3 2 2 3 2 2 3 3 3 1

16 I 1 3 2 3 1 2 1 2 3 1

II 2 1 3 2 2 3 3 3 1 2

17 I 1 1 1 2 2 3 1 2 2 2

II 2 3 3 1 1 1 3 1 3 1

18 I 3 3 3 2 1 2 1 3 2 2

II 2 2 2 3 2 3 3 2 1 1

Effective coding in the utility function was (1) (0 1), (2) (1 0), (3) (0 0).
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Table 5

Maximum likelihood estimates of MNL model and maximum simulated likelihood estimates of KL-Asc model for the landscape study

MNL KL-Asc

Cost �0.037 (�4.46) �0.049 (�4.45)

Ml_alot 0.712 (13.84) 0.683 (10.28)

Ml_some 0.369 (7.06) 0.294 (4.03)

S_alot 0.711 (14.22) 0.662 (9.15)

S_some 0.495 (8.99) 0.413 (4.92)

P_alot 0.589 (11.90) 0.540 (7.47)

P_some 0.416 (8.01) 0.358 (4.80)

A_alot 0.545 (11.00) 0.481 (7.02)

A_some 0.443 (8.58) 0.370 (5.27)

SQ-Asc �1.420 (�6.20)

s 1.351 (7.73)

Asymptotic z-values in brackets.
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relative performance of the four designs obtained with the methods described above. All designs are
developed under the assumption that the true DGP has an MNL specification. Such an assumption is
the most frequently made in this line of research. However, after the data collection, the response
pattern may display evidence corroborating other logit specifications. In particular, we examine the case of a
flexible error component model with alternative-specific constant, which produces a correlation structure
across utilities analog to that in the nested logit. This specification is examined in some detail in [64] and it
accounts for status quo effects in a more flexible fashion than the more commonly employed nested logit
specification.

In our CE the error component approach (or ‘kernel’ logit (KL) specification) takes the following basic
utility form:

Uðc1Þ ¼ bxc1 þ ~uc1 ¼ bxc1 þ �þ uc1 ,

Uðc2Þ ¼ bxc2 þ ~uc2 ¼ bxc2 þ �þ uc2 ,

UðsqÞ ¼ Ascþ bxsq þ usq, ð5Þ

where UðcjÞ denotes the utility associated with choice alternative j ðj ¼ 1; 2Þ and UðsqÞ denotes the utility
associated with the status quo alternative. In our case, ��Nð0;s2Þ are additional error components to the
conventional Gumbel-distributed uc1 and uc2 , thereby leading to the following error covariance structure:

Covð ~uc1 ; ~uc2Þ ¼ s2; Varð ~uc1Þ ¼ Varð ~uc2 Þ ¼ s2 þ p2=6, ð6Þ

Covð ~ucj
; ~usqÞ ¼ 0; Varð ~usqÞ ¼ p2=6; j ¼ 1; 2, ð7Þ

where ~ucj
¼ �þ ucj

.12 Note that this is an analog of the nested logit model in the sense that it allows for
correlation of utilities related to alternatives different from the status quo (i.e. in the same nest) [12,33,71].
However, there is no IIA restriction, and the Asc captures any remaining systematic effect on the sq

alternative. With s2 ¼ 0 the MNL model is obtained.
Conditional on the presence of the error component � for the j alternative the choice probability is logit, and

the assumption above leads to the following expression for each marginal choice probability:

PðiÞ ¼

Z
�
pðij�Þf ð�jhÞd� and; hence; substituting in:

PðiÞ ¼

Z þ1
�1

expðbxi þ 1ðiÞ�Þ

expðbxsqÞ þ expðbxc1 þ �Þ þ expðbxc2 þ �Þ
fð0;s2Þd�, ð8Þ
12As expanded upon by Brownstone and Stone [12], Train [71], Herriges and Phaneuf [33], more general forms than this may be

empirically appealing.
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where fð�Þ is the normal density, 1ðiÞ is an indicator function that takes the value of 0 if i ¼ sq, 1 otherwise,
and b is a vector of parameters including an alternative-specific constant for the status quo (sq). Estimation of
b̂ and ŝ2 is obtained by maximum simulated likelihood [71].

The alternative designs subject to comparison are assessed by Monte Carlo experiments. The evaluation of
the performance of the four designs in the case of an incorrectly assumed DGP gives us the chance of
examining the robustness of their performance to the MNL specification assumed a priori, which is the one for
which standard nonlinear designs are commercially available.

Short of the differences in the form of the DGP and the alternative ED, the steps of the experiment are the
same. We create r ¼ 1; 2; 3; . . . ;R ¼ 1000 samples of 100, 250 and 500 observations under two different DGP:
the MNL and the error components model with alternative-specific constant.
1.
 At each replication r individual counterfactual responses yr
i are produced by identifying the alternative j

associated with the largest utility value Uðb; �j ; uj ;xjÞ, where the b values are those for the DGP and are
reported in Table 5, while the errors �j ; uj are drawn from the adequate distributions (Gumbel for MNL;
Gumbel and Normal for the KL-Asc).
2.
 The counterfactual yr
i produced for the whole sample are used to get maximum likelihood or maximum

simulated likelihood estimates bbr
. Then a series of indicators of estimation performance are computed.

Given their relevance in nonmarket valuation, we focus on estimates of marginal rates of substitution
between the generic k attribute and money:

dMRS
r

k ¼ btr
k ¼ �

bbr

kbbm

. (9)

We then report some standard efficiency indicators.
(a)
 First, we report the empirical mean squared error:

MSE ¼
1

R

XR

r¼1

ðbtr
� tÞ2; r ¼ 1; . . . ; 1000, (10)

where t is the true value and btr is the rth value estimated in the experiment. Everything else being equal,
the design with lowest MSE value is the one with the smallest empirical bias.
(b)
 The second measure reported is the empirical bias:

BiasðbtÞ ¼ 1

R

XR

r¼1

ðbtr
� tÞ, (11)

from which one can derive the variance, since ½BiasðbtÞ�2 ¼MSE � VarðbtÞ.

(c)
 The third measure considered is the average of the absolute relative error:

RAE ¼
1

R

XR

r¼1

j ðbtr
� tÞ=t j . (12)

This gives a relative measure of the error, which can be easily mapped into percent of error of the ‘true’
marginal WTP for the attribute.
(d)
 Finally, we enlarge the set of standard measures for Monte Carlo studies and as an additional measure of
efficiency we report the fraction of MRS values falling within a 10% interval around the true value:

G0:05 ¼
1

R

XR

r¼1

1ðbtr
2 t� t� 0:05Þ, (13)

where 1ð�Þ is an indicator function. This gives an easy to remember ‘rule-of-thumb’ measure of the
empirical efficiency of each design.
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5. Monte Carlo results
A large amount of information is produced by the experiments and here we focus only on the estimation of
the MRS for the attribute ML that showed highest implicit value in the original study (see Table 5 and [63]).
Qualitatively similar results were obtained for the other attributes. All attributes in this study were expressed
at two levels of policy action ‘some’ (ML_some) and ‘a lot of’ (ML_alot) and concerned the visual aspect of
mountainous rural land (ML). Tables 6–8 display the results from the empirical distributions of the MRS and
illustrate the sensitivity of these to the four different designs.

5.1. Correct specification and correct design information

Table 6 presents the results for ‘the best of both worlds’. It portrays the case in which the analyst has
correctly guessed the DGP at the stage of design development, and the correct specification is employed to
obtain the estimates of marginal WTP. The contribution to the empirical bias by model mis-specification is
therefore nil in this case, and the observed empirical bias is due to the finite sample size. Similarly, most of the
empirical MSE is made up of variance.
Table 6

Summary statistics from Monte Carlo experiment on data from DGP MNL and estimates from MNL specification

DGP: MNL, Design: MNL

Assumption: MNL

Designs MSE Bias RAE Gð0:05Þ

ML_A lot

Shifted N ¼ 100 21.54 1.81 0.19 0.165

Shifted N ¼ 250 11.55 1.88 0.14 0.213

Shifted N ¼ 500 8.14 2.06 0.12 0.226

Dp-Optimal N ¼ 100 22.86 �0.02 0.20 0.157

Dp-Optimal N ¼ 250 9.55 0.20 0.12 0.259

Dp-Optimal N ¼ 500 5.99 0.37 0.09 0.349

Dw
b -Optimal N ¼ 100 29.17 �0.50 0.22 0.140

Dw
b -Optimal N ¼ 250 10.28 �0.05 0.14 0.213

Dw
b -Optimal N ¼ 500 5.25 �0.08 0.09 0.320

Di
b-Optimal N ¼ 100 18.28 1.05 0.17 0.182

Di
b-Optimal N ¼ 250 7.76 1.04 0.11 0.288

Di
b-Optimal N ¼ 500 4.28 0.89 0.09 0.365

ML_Some

Shifted N ¼ 100 18.86 0.48 0.34 0.086

Shifted N ¼ 250 7.73 0.12 0.22 0.138

Shifted N ¼ 500 4.02 0.37 0.16 0.204

Dp-OptimalN ¼ 100 22.38 �1.27 0.38 0.078

Dp-Optimal N ¼ 250 9.56 �1.07 0.24 0.135

Dp-Optimal N ¼ 500 5.91 �1.30 0.19 0.165

Dw
b -Optimal N ¼ 100 25.28 0.30 0.39 0.081

Dw
b -Optimal N ¼ 250 9.92 �0.20 0.25 0.128

Dw
b -Optimal N ¼ 500 4.96 0.17 0.18 0.195

Di
b-Optimal N ¼ 100 21.72 0.91 0.37 0.074

Di
b-Optimal N ¼ 250 8.67 0.26 0.24 0.139

Di
b-Optimal N ¼ 500 4.28 0.10 0.17 0.183
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Table 7

Summary statistics from Monte Carlo experiment on data from DGP MNL and estimates from KL-Asc specification

DGP: MNL, Design: MNL

Assumption: Kernel logit

Designs MSE Bias RAE Gð0:05Þ

ML_A lot

Dw
b -Optimal N ¼ 100 44.42 0.17 0.27 0.129

Dw
b -Optimal N ¼ 250 16.03 0.49 0.17 0.192

Dw
b -Optimal N ¼ 500 7.42 0.39 0.11 0.288

Di
b-Optimal N ¼ 100 27.87 2.32 0.22 0.154

Di
b-Optimal N ¼ 250 12.77 1.99 0.15 0.207

Di
b-Optimal N ¼ 500 7.63 1.74 0.12 0.261

ML_Some

Shifted N ¼ 100 31.89 2.04 0.44 0.090

Shifted N ¼ 250 11.82 1.31 0.27 0.110

Shifted N ¼ 500 7.31 1.47 0.22 0.132

Dp-Optimal N ¼ 100 39.42 1.44 0.49 0.078

Dp-Optimal N ¼ 250 14.95 1.13 0.31 0.097

Dp-Optimal N ¼ 500 7.04 0.47 0.21 0.152

Dw
b -Optimal N ¼ 100 38.64 0.39 0.48 0.082

Dw
b -Optimal N ¼ 250 14.46 0.02 0.30 0.118

Dw
b -Optimal N ¼ 500 7.03 0.37 0.21 0.142

Di
b-Optimal N ¼ 100 35.16 1.67 0.47 0.074

Di
b-Optimal N ¼ 250 13.81 0.97 0.29 0.111

Di
b-Optimal N ¼ 500 7.03 0.86 0.21 0.126
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Based on the performance of the three D-optimal designs as described by the MSE it can be seen how
Di

b-optimal is the most efficient at sample sizes of N ¼ 250 and 500 across both attributes. However, at small
sample sizes ðN ¼ 100Þ the shifted design gives a performance superior to that of Dp- and Dw

b -optimal designs
for both attributes, and for the attribute with the lowest impact on utility (ML_some) it even outperforms the
Di

b-optimal design.
A graphical illustration of what happens at large sample sizes ðN ¼ 500Þ is reported in Fig. 1 where we show

the kernel-smoothed [9] distributions of MRSMLalot
for all four designs. Notice that while the Dw

b -optimal
design is centered on the true value of 19.32, the Dp-optimal and the Di

b-optimal, respectively, underestimate
and overestimate slightly, while the shifted design produces significant overestimates at this sample size.

Analog conclusions can be drawn from an inspection of Fig. 2, where we report the absolute relative error
ðRAEMLalot

Þ. Suppose a decision rule was to be incorrectly taken if the relative absolute error is larger than
20% or 30%; from the plot in Fig. 2 it is apparent that the number of cases in which this would occur is
highest for the shifted design (continuous line).

In conclusion, in this case—in which the DGP is coherent with the a priori expectations and estimates are
derived under the correct specification—the clear-cut superiority of designs that incorporate prior information
on b over the shifted design only emerges at a high sample size ðN ¼ 500Þ, and for the attribute with high
relative weight on utility. For the attribute with low relative weight on utility at all sample sizes the MSE
values for the shifted design are smaller than those for the other D-optimal designs.

5.2. Incorrect model specification and correct design information

As a way to investigate the sensitivity of these results to potential model mis-specification at the estimation
phase, we now turn our attention to the case in which the estimation makes use of a mis-specified model
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Table 8

Summary statistics from Monte Carlo experiment on data from DGP KL-Asc and estimates from KL-Asc specification

DGP: Kernel logit, Design: MNL

Assumption: Kernel logit

Designs MSE Bias RAE Gð0:05Þ

ML_A lot

Shifted N ¼ 100 35.44 2.02 0.33 0.198

Shifted N ¼ 250 13.75 1.73 0.21 0.293

Shifted N ¼ 500 7.96 1.74 0.16 0.368

Dp-Optimal N ¼ 100 59.86 2.80 0.41 0.168

Dp-Optimal N ¼ 250 20.86 1.84 0.25 0.262

Dp-Optimal N ¼ 500 12.19 1.68 0.20 0.308

Dw
b -Optimal N ¼ 100 51.76 1.52 0.40 0.168

Dw
b -Optimal N ¼ 250 18.88 1.22 0.25 0.271

Dw
b -Optimal N ¼ 500 9.03 1.01 0.17 0.368

Di
b-Optimal N ¼ 100 29.07 2.16 0.31 0.215

Di
b-Optimal N ¼ 250 12.90 1.88 0.21 0.298

Di
b-Optimal N ¼ 500 8.61 1.92 0.17 0.337

ML_Some

Shifted N ¼ 100 32.28 1.12 0.74 0.087

Shifted N ¼ 250 11.58 0.70 0.44 0.141

Shifted N ¼ 500 6.02 0.77 0.32 0.194

Dp-OptimalN ¼ 100 35.41 1.09 0.76 0.093

Dp-Optimal N ¼ 250 14.50 0.90 0.50 0.137

Dp-Optimal N ¼ 500 7.15 0.70 0.35 0.180

Dw
b -Optimal N ¼ 100 42.66 0.82 0.83 0.086

Dw
b -Optimal N ¼ 250 14.48 0.52 0.50 0.133

Dw
b -Optimal N ¼ 500 7.23 0.46 0.36 0.162

Di
b-Optimal N ¼ 100 24.58 0.42 0.81 0.081

Di
b-Optimal N ¼ 250 9.83 0.68 0.50 0.122

Di
b-Optimal N ¼ 500 5.48 0.74 0.36 0.184
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(KL-Asc), but the D-efficient experiment design is correctly informed with parameter values from the right
DGP (MNL in Table 5). This would indeed be an unusual situation in real life, but it serves as a pedagogical
tool to identify the effect of mis-specification. The Monte Carlo statistics for such a case are reported in
Table 7, and the mis-specified model we employ is the flexible error component model with Asc for the sq

(KL-Asc) in Eq. (5), while the DGP is an MNL.
In this case the bias will include a component due to model mis-specification, and the MSE of the effect of

simulation variance. The results show a positive bias in all designs, i.e. an overestimate of marginal WTP. The
values show that in this case too at medium ðN ¼ 250Þ and large ðN ¼ 500Þ sample sizes the best MSE-based
performance is obtained by the Di

b-optimal design, followed by the Dw
b -optimal one. However, there is a

noticeable difference in the performance of the Dp-optimal and shifted designs between ML_alot and
ML_some. While for ML_some these two designs achieve efficiency levels as good as those obtained by
Bayesian designs (indeed at all sample sizes), the results are mixed at intermediate and low sample sizes for the
attribute with high impact on utility ML_alot.

The fact that the Bayesian (informed and weakly informed) designs are the most robust in the presence of
model mis-specification comes across best when observing the kernel plots of absolute relative error
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Fig. 1. DGP MNL and estimation MNL: kernel-smoothed distribution (optimal bandwidth) of the MRS estimates of landscape attribute

mountain land MLalot. MRS value of the DGP is 19.32: continuous line, shifted design; dashed line, Dp-optimal design; dotted line,

Dw
b -optimal design; dashed and dotted line, Di

b-optimal design.
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Fig. 2. DGP MNL and estimation MNL: kernel-smoothed distribution (optimal bandwidth) of the absolute relative error of landscape

attribute mountain land MLalot: continuous line, shifted design; dashed line, Dp-optimal design; dotted line, Dw
b -optimal design; dashed

and dotted line, Di
b-optimal design.
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distributions in Fig. 3, which again refers to the large sample size scenario for the coefficient ML_alot. There is
therefore evidence that
1.
 as long as the a priori design information is ‘good’ the Bayesian designs are robust to mis-specifications in
the estimation phase when the sample is sufficiently large;
2.
 under all criteria the shifted design is preferable to the Dp-optimal at small and intermediate sample sizes;

3.
 and from Fig. 3, that at large sample sizes the Dp-optimal design produces large errors more frequently than

the shifted design.

It is clear from the above that the Dp-optimal design incorporated with excessive precision the prior
information on b, thereby foregoing robustness to mis-specification. The Bayesian designs, instead, by
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Fig. 3. DGP MNL and estimation KL-Asc, designed obtained assuming an MNL specification: kernel-smoothed distribution (optimal

bandwidth) of the absolute relative error of landscape attribute mountain land MLalot: continuous line, shifted design; dashed line,

Dp-optimal design; dotted line, Dw
b -optimal design; dashed and dotted line, Di

b-optimal design.
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allowing some degree of uncertainty are robust to mis-specification. Such robustness, however, needs large
sample sizes to produce a better performance than that obtained in the shifted design.

5.3. Correct specification, but incorrect design information

What happens—instead—when the a priori information incorporated in the D-efficient designs is ‘poor’ and
the model specification subsequently chosen is correct (i.e. consistent with the DGP)? This case can occur in a
variety of forms, and so this question can only be crudely answered by our investigation, and certainly—given
its relevance—deserves a more tailored study. As a way of exploring this instance we repeated the experiment
with the real DGP formulated as a KL-Asc and correct estimation assumptions, but with incorrect prior
(MNL values from Table 5) for the experiment design.

The choice of the error component model KL-Asc is motivated by the fact that it allows for a greater
variance and correlation in the errors associated with the utilities of experimentally designed alternatives than
in those associated with the status quo alternative. This is an often-encountered situation in environmental
valuation (see, for example, [6,49]), which results in nested logit models providing a better fit than conditional
logit models. The KL-Asc provides a similar covariance structure to the nested logit model with a degenerate
nest for the status quo alternative [64]. It is also more flexible and has an objective function which is globally
concave in the parameter space, it is hence deemed appropriate for a Monte Carlo simulation.

Table 8 reports the relevant statistics and shows the bias to be positive in all designs. The values show that
under these conditions, under the ¯RAE and G0:05 criteria the shifted design outperforms all the D-efficient
designs at all sample sizes and for both coefficient magnitudes. In terms of bias and mean squared error the
shifted design does not perform much worse at intermediate to high sample sizes, while it dominates at low
sample sizes. The distribution of RAE is illustrated in Fig. 4 for N ¼ 500 and the high value coefficient
ML_alot. The more incorrect information is built into the design, the higher the RAE produced, even when the
specification used in estimation is the same as the DGP. While it is easy to anticipate this result rationally, our
investigation provides ground for some less obvious considerations.

Importantly, results suggest that efficiency gains made available from advanced non linear and Bayesian-
informed designs are only available in cases in which the a priori design information is good and that this
outcome is robust to substantial model mis-specification if the sample size is large enough. In the absence of
good quality a priori design information to build into the design, and at intermediate to small sample sizes, it
would appear that researchers are better off using more rudimentary designs, even if these are only optimized
for linear models. And this is exactly what the profession has been doing, perhaps inadvertently.
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Fig. 4. DGP KL-Asc and estimation KL-Asc, designed obtained assuming an MNL specification: kernel-smoothed distribution (optimal

bandwidth) of the absolute relative error of landscape attribute mountain land MLalot: continuous line, shifted design; dashed line,

Dp-optimal design; dotted line, Dw
b -optimal design; dashed and dotted line, Di

b-optimal design.
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6. Conclusions and further research

Although discrete choice responses from CEs are analyzed using nonlinear models, our literature
review reveals that researchers in environmental economics applications have mostly used experimental
designs for multivariate linear models. Experimental designs for logit models can be derived but
require the analyst to formalize some guess on the true values. Bayesian methods can be used to
account for the degree of uncertainty the analysts have about such guess. We review the literature
in this area of research, then, by means of Monte Carlo experiments—and inspired by the results and
structure of a real-world application—we explored the relative performance of four alternative
approaches to derive experimental designs. The simplest design to derive is the shifted, and it is
based on a modification of a conventional fractional factorial main effect orthogonal design which
does not incorporate any a priori information on the true parameter values. The other three were
specifically optimized for the highly nonlinear MNL model, and contained various forms of a priori

information on the underlying parameter values. The Dp-optimal design did not allow for uncertainty
on parameter values, while the two Bayesian designs did, with more uncertainty for the Dw

b -optimal. Such
designs can be derived on the basis of information that typically becomes available from a standard
pilot study—in the form of parameter estimates and their variance–covariance matrix—built into the
Di

b-optimal design.
The features of the Monte Carlo experiments (sample size, DGPs, choice-set construction, etc.) were

chosen so as to reflect the reality commonly faced by practitioners in environmental valuation. It is always
difficult to generalize from Monte Carlo experiments, however, the results from our experiments suggest that
efficiency gains are available from the use of Bayesian D-efficient designs for nonlinear-in-the-parameters
models.

With good a priori information on the values of the unknown parameters gains can be available at all
sample sizes. Even by building into the design relatively poor information (e.g. by means of Dw

b -optimal
designs), efficiency gains become attractive at medium to large sample sizes ðNX250Þ, but they are more
significant when
�
 the attribute has a relatively large weight in the utility function;

�
 the a priori information on the parameters provided by the pilot is of good quality;

�
 and the DGP is consistent with the specification chosen for the derivation of the design.
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However, when these conditions fail, the most ‘rudimentary’ of the designs we employed (the shifted design)
does not perform much worse than D-efficient designs. The shifted design is derived from the common FFOD

that currently dominates the state of practice. This design ignores any information on the parameters of the
true DGP.

This result suggests that—in as much as a priori information on parameter values has been ignored at the
stage of design construction—environmental economists may not have missed out too much in terms of
efficiency gains, and even in bias, as a consequence of the lag with which they have been adopting recent
advances in experiment design construction.
6.1. Further research

Our research points to an area of potentially interesting and valuable contributions on methods of design
construction that do incorporate a priori information progressively and cumulatively at different stages of the
survey. This could be of particular interest as new computer-assisted technology becomes increasingly used in
CE surveys and especially given the encouraging results that bid design updating has produced in the field of
contingent valuation [53,58].

Constructing designs using adaptive techniques can be a valuable strategy in choice-experiment surveys [55].
For example, one can systematically incorporate the information becoming available as the sampling
progresses to derive gradually more tailored designs. The types of information needed is the parameter
estimates and their variance–covariance into successive designs. A similar suggestion was put forward in [39]
for the cost attribute. On the basis of our results we speculate that this updating should possibly involve a
selection of attributes, such as those that are relevant for policy issues, or even all of them as we did in this
application. More research on the most effective strategy to gradually incorporate such information during
survey administration is needed.

Another area of potential interest may be that of deriving experimental designs based on efficiency criteria
that most directly recognize the ultimate purpose of attribute-based valuation studies. The focus on efficient
estimation of monetary values, typically a nonlinear function of parameter estimates, should be explicitly
addressed in the measure of efficiency. This could translate—for example—as the maximization of the
expected determinant of the information matrix for the vector of marginal value estimate, rather than that for
the parameters of the indirect utility function.

While statistical efficiency remains an important goal, more research is necessary to evaluate
whether this additional efficiency comes at too high a cost in terms of increased choice complexity
to respondents. This issue requires field tests and can only be partially addressed by means of simulation
tools.

Finally, given the importance that discriminating between behaviorally plausible and hence likely
specifications in logit models has on the efficiency of the estimates, future research should also focus on the
construction of designs able to discriminate between competing specifications, perhaps by mixing measures of
design information. Seminal research of this kind in the context of multivariate linear models is already
available [5].
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