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The authors provide more efficient designs for conjoint choice experi- 
ments based on prior information elicited from managers about the 
parameters and their associated uncertainty. The authors use a Bayesian 
design procedure that assumes a prior distribution of likely parameter val- 
ues and optimizes the design over that distribution. The authors propose 
a way to elicit prior information from managers and show in Monte Carlo 
studies that the procedure provides more efficient designs than the cur- 
rent procedures. The authors provide an empirical application, in which 
they elicit prior information on the parameter values and the associated 
uncertainty from managers. Here, the Bayesian design provides 
30%-50% lower standard errors of the estimates and an expected 

predictive validity that is approximately 20% higher. 

Designing Conjoint Choice Experiments 
Using Managers' Prior Beliefs 

A conjoint choice design should provide as much infor- 
mation as possible on the parameters of the choice model 
calibrated on the collected data. Several authors have 
addressed the problem of how to construct designs with 
higher efficiency (Bunch, Louviere, and Anderson 1994; 
Huber and Zwerina 1996; Kuhfeld, Tobias, and Garratt 
1994; Lazari and Anderson 1994) and provide methods to 
produce those designs. Constructing designs with improved 
efficiency has become more and more important because 
problems of lengthy questionnaires are increasingly trou- 
bling market researchers. The dilemma is the trade-off 
between the increasing quantity of information obtained at 
higher costs and the decreasing quality of that information 
because of such effects as respondent fatigue and boredom. 

More efficient designs enable a reduction in the number 
of questions asked from a respondent as well as a reduction 
in the number of respondents. We are interested in generat- 
ing designs for conjoint choice experiments. Complications 
in the construction of these designs arise from the analysis 
of the data from conjoint choice experiments with the multi- 
nomial logit model (MNL; Louviere and Woodworth 1983). 

Contrary to experimental design methods for linear regres- 
sion (Atkinson and Donev 1992; Lenk et al. 1996; Pilz 
1991), for the MNL the construction of an efficient experi- 
mental design requires knowledge of the values of the 
parameters. This is so because the information on the 
parameters provided by the design is dependent on the value 
of those parameters. Unfortunately, the parameter values are 
unknown at the time the design is constructed, and 
researchers need to assume values to enable a design to be 
generated. Often, researchers construct designs by assuming 
that the parameters are zero. This construction can be moti- 
vated by the argument that the design achieves optimality 
under the null hypothesis of no effect of the attribute level in 
question. However, in many applications, zero parameter 
values are judged unlikely a priori by product or marketing 
managers, and the constructed design can have low effi- 
ciency at the parameter values that seem relevant from a 
management point of view. It is therefore desirable to opti- 
mize the design over nonzero parameter values, reflecting 
the managers' beliefs. However, in doing so, researchers 
must accommodate the uncertainty about those beliefs. This 
is what we set out to do in this article. 

Huber and Zwerina (1996) provide a first and important 
effort to construct designs with improved efficiency when 
the parameters are assumed to be nonzero. They argue that 
in practice, conjoint questionnaires are often pretested on 
small samples, the results of which may provide reasonable 
priors for the construction of the design. However, this 
approach has limitations. First, some design should already 
be available for the pretest, and second, it is not known how 
efficient the constructed designs are if the true parameter 
values differ from the ones assumed in the pilot, because 
uncertainty about them is discarded. Researchers must 
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obtain designs that take the uncertainty about the assumed 
parameter values into account. Such designs are expected to 
yield a higher efficiency across a wide range of parameter 
values. Uncertainty about specific values may be accommo- 
dated through a prior distribution over a range of plausible 
values. In this article, we address this issue and develop 
designs with improved efficiency that are constructed in a 
Bayesian fashion (for an excellent review of Bayesian 
experimental designs, see Chaloner and Verdinelli 1995), 
incorporating prior parameter distributions elicited from 
managers. We build on previous work in this area (Huber 
and Zwerina 1996), in that our designs pertain to a typical 
conjoint choice experimental setup for MNL models with 
qualitative predictors and main effects only. 

In the next section, we describe the construction of 
Bayesian designs. First, we introduce the MNL model for 
choice experiments, and then we describe in more detail the 
design optimality criteria we use. We elaborate on the elici- 
tation and use of prior distributions for the parameter values 
and propose a Bayesian approach to the construction of 
experimental designs. Then we compare the performance of 
a design obtained by Huber and Zwerina (1996) with 
Bayesian designs. In addition, we investigate the perform- 
ance of our modified design-generating algorithm. We con- 
duct Monte Carlo studies to investigate the relative effi- 
ciency of the designs under various conditions. In the 
following section, we provide an empirical application, in 
which we elicit prior information from management to yield 
improved choice designs. In the last section, we discuss lim- 
itations and extensions. 

CHOICE DESIGNS 
In developing choice designs for the MNL model, we 

specify the utility of a subject for profile j in choice set s as 

(1) uj = x'i1 + 
Eis, 

where xjs is a k-vector of the attributes of the alternative j, f0 
is a k-vector parameter weighting these attributes, and 

cs 
is 

an error term following an i.i.d. extreme value distribution. 
If the respondents are assumed to choose the profile with the 
highest utility of the J alternatives in choice set s, the prob- 
ability that j is chosen can be expressed in closed form: 

(2) Pjs= exp(js) 

Sexp(xrs3) 
r=I 

We assume a design in which all respondents are to be given 
the same choice sets. Because of the assumption of inde- 
pendence of the error terms, the choices made among the 
alternatives in different choice sets are independent. Then, 
the log-likelihood function is the sum of the log-likelihood 
functions of the choice sets; that is, 

s J 

(3) L = Nx X 
fjs 

x inpjs, 
s=l j=1 

where fjs denotes the observed number of purchases of prod- 
uct j in choice set s divided by the total number of purchases, 
N. The information matrix, obtained as the variance of the 
first-order derivatives of the log-likelihood with respect to 

the parameters, is the sum of the choice-set-specific infor- 
mation matrices: 

s 

(4) () = N x P - 
IP 

IXS(Ps- 
PsPS")Xs, 

s=lI 

where Xs = [xIs .... xjs]', Ps = 
[Pls.I.,. Pjs]', 

and Ps = diag(pls, 

. 
PJs). 

Our concern is to find a design of the product profiles 
that, given a number of choice sets, a number of alternatives 
in the choice sets, and a number of attribute levels, has 
improved efficiency. Following the other design-generation 
procedures provided in the literature, we consider the size of 
the choice set to be fixed by the researcher before design 
construction. We accept minimal attribute-level overlap as a 
constraint on the design, which means that within a choice 
set, the same attribute level should occur as few times as 
possible. Huber and Zwerina (1996) use level balance as a 
design constraint, which implies that all levels of an attrib- 
ute occur in the same frequencies. However, we show sub- 
sequently that sacrificing strict level balance enables us to 
generate more efficient designs than enforcing this criterion 
does. It appears that the design-optimization procedure we 
use yields designs that are approximately level balanced, 
even without explicitly enforcing this constraint. Huber and 
Zwerina (1996) also use orthogonality as a design optimal- 
ity constraint, because according to their definition, together 
with minimal level overlap and level balance, it yields effi- 
cient designs. In their definition, a design is orthogonal if 
X'X is diagonal for a suitably coded X (see also Kuhfeld, 
Tobias, and Garratt 1994). This design orthogonality (Lind- 
sey 1996, p. 235) is of limited use, because in the MNL 
model it does not imply that the parameters themselves are 
independent (though design orthogonality tends to reduce 
the strength of the relationships among parameters). A more 
useful concept is information orthogonality (Lindsey 1996, 
p. 236), in which the parameter estimates are truly inde- 
pendent. However, from Equation 4 it appears that if the 
parameters deviate from zero, finding any design that satis- 
fies information orthogonality is unlikely. Therefore, 
orthogonality and level balance will not play a role in our 
procedure to develop efficient choice designs. We look for 
designs that maximize the information on the estimates as 
represented in the Fisher information matrix in Equation 4 
under the constraint of minimal level overlap. A widely 
accepted one-dimensional measure of information is the 
determinant of the information matrix (Huber and Zwerina 
1996; Kuhfeld, Tobias, and Garratt 1994). It is motivated 
from the confidence ellipsoid for f3 that equals 

(5) 3: (13 - 

6)'l6)(1 

- ?)< 
constant}, 

where ) is the ML estimate of 
[3 

and has a volume proportional 
to [det L(f3)]-12 (Silvey 1980). Researchers usually employ the 
Dp-error: Dp-error = det[I(f3)]-1fk as a one-dimensional meas- 
ure of the efficiency of a design. Here, k is the dimensionality 
of the parameter vector, and the exponent serves to "adjust" 
the information for the dimensionality of the parameter vector. 
The power 1/k normalizes the determinant of the information 
matrix, making it proportional to the number of respondents. 
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It should be noted that we cannot prove that the designs 
we generate are strictly optimal, nor are they expected to be. 
There are several reasons for this. First, by enforcing mini- 
mal level overlap, we optimize the choice design under a 
constraint that may make it less efficient. We search for 
"optimal" designs within the class of minimal level overlap 
designs. Second, we optimize a scalar measure of the infor- 
mation, det[I()]-UIk, because this measure has intuitive 
appeal and has been used previously in the design of con- 
joint choice experiments (Huber and Zwerina 1996) and 
other experiments for logit models (Zacks 1977). However, 
other measures are possible, for example, In { det[I(13)]}. This 
measure is appealing from a Bayesian perspective because it 
can be derived from a utility function of a design based on 
Shannon information (Chaloner and Verdinelli 1995). 
Design optimality is only defined with respect to the partic- 
ular scalar measure of information we use, but our approach 
can easily be extended to include others, for example, the 

In{ det[I(13)] } criterion. Third, we use heuristic search proce- 
dures to find the optimum. Although those heuristics yield 
designs with improved efficiency, they may not yield opti- 
mal efficiency. Therefore rather than refer to "optimal" 
designs, we refer to designs with "improved efficiency" or 
"more efficient" designs. Table 1 provides an overview of 
the criteria considered by previous authors. 

Eliciting and Using Prior Information 
We propose to elicit prior information on the parameters 

from product or marketing managers in the company that 
issues the study and to use that in design construction. Man- 
agers hold prior beliefs on the share of consumers that will 
purchase a product with a specific attribute level. Such prior 
beliefs are commonly used in selecting the attributes and 
levels to be included in a design, but though a priori beliefs 
could explicitly be allowed to affect the design itself, to date 
they have not been used in that way. 

How can prior information on choice model parameters be 
elicited from managers? Subjective Bayesian theory states 
that personal beliefs can be reflected through subjective prob- 
ability statements (Berger 1985, p. 75): It assumes that people 
can conceive of uncertainty about events as probabilities and 
can coherently express those probabilities (Savage 1976). We 
wish to elicit prior beliefs from managers in the form of a 
(95%) credible set that involves the upper and lower bounds 
of the prior probability distribution of model parameters 
(Shafer 1982). However, instead of eliciting beliefs for a 

Table 1 
PREVIOUS RESEARCH ON EFFICIENT DESIGNS IN 

MARKETING 

Assumed 
Authors Year Criterion Parameters Algorithma 

Kuhfeld, Tobias, 
and Garrat 1994 det(X'X) - Modified Federov 

Lazari and 
Anderson 1994 det(X'X) - Not specified 

Huber and 
Zwerina 1996 det[l(P)-'] Po R, S 

This article 2001 det[l(13)-'] f(f3o, qo) R, S, C 

Notes: R = relabeling, S = swapping, C = cycling; for an explanation, see 
the text. 

parameter P, directly, we propose to elicit managers' beliefs 
about the relative f, (market shares) with which customers in 
the population will choose a product with attribute level I. We 
then derive the corresponding subjective probability distribu- 
tion (SPD) of the parameter from it by a transformation. The 
motivation for doing so is that prior distributions are not 
invariant under transformations. Therefore, equivalent prior 
distributions for parameters in differently parameterized 
choice models may lead to different prior distributions for the 
choice frequencies. Techniques for elicitation of beliefs on 
relative frequencies are well developed in the psychological 
literature, but it may be difficult for managers to state beliefs 
on relatively abstract constructs as parameters. 

Various elicitation techniques have been proposed (see 
Van Lenthe 1993), which attempt to control the reliability 
and validity of the stated beliefs (Lichtenstein, Fischhoff, 
and Phillips 1982). In particular, overconfidence (Yates et al. 
1989) has been reported to be a major problem. Scoring 
rules are used to give feedback on individual assessments in 
an attempt to alleviate overconfidence. With strictly proper 
scoring rules, individual assessors are stimulated to report 
only true beliefs, because they can maximize the score only 
if the stated SPD corresponds to their subjective knowledge. 

We use a paper-and-pencil version of the elicitation 
method proposed by Van Lenthe (1993), employing proper 
scoring rules in a graphically oriented elicitation task. Man- 
agers are asked to provide a direct visualization of their SPD 
of customer choice by drawing it, for each attribute in the 
design, in panels as is shown in Figure 1. Feedback is pro- 
vided in terms of upper and lower bounds for the subjective 
judgments, and multiple tries are allowed. In the task, we 
ask the managers to think of these probabilities as if the 
products formed by all possible combinations of the attrib- 
utes and levels are available to consumers and invite the 
managers to assess the choice probabilities for a product that 
we present with specific levels of one particular attribute. 
Van Lenthe (1993) extensively investigates the performance 
of his method, which provides estimates of the lower nt, and 
upper ?tl bounds of the subjective probability distribution 
function of choice frequencies. 

Despite the scoring rule used, the manager, specifying an 
interval for the choice frequencies, may still display over- 
confidence. Following Almond (1996, p. 241), we therefore 
take the managers' judgment to hold with a probability of 
95%, which is equivalent to eliciting a 95% credibility inter- 
val from them, and fit a normal distribution to the 95% cred- 
ible interval. From the elicited prior distribution of the fre- 
quencies, we derive the prior distribution of the parameters, 
which has a density denoted i(03), by employing an inverse 
logit transformation as shown in Equations 8 and 9 in the 
following application. 

Constructing the Design 

Adopting a Bayesian approach to design construction (see 
Atkinson and Donev 1992, p. 211; Chaloner and Verdinelli 
1995), we use the prior distribution of the logit coefficients ?(13) 
thus obtained to reflect subjective beliefs in the probabilities 
that particular parameter values occur. The optimal design is 
the one that minimizes the DB-error, that is, the expectation of 
the Dp-error over the prior distribution of the parameter values: 

(6) 
DB-error 

= 
E[det l(13)-1/k] 

= J det l(B)-1/kf(B)dp. 
Rk 
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Figure 1 
EXAMPLE OF SUBJECTIVE PROBABILITIES ASSESSED 

BY A MANAGER 
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We note that this criterion is necessarily approximate, as it 
is based on an asymptotic approximation to the posterior 
distribution. The expected information is approximated by 
drawing R times from f(3), and computing 

R 

(7) DB(X) = det I(Pr)-I/k/R, 
r=1 

where pr is a draw from f(p). We use R = 1000.1 Then we 
evaluate this approximate value for designs constrained to 
have minimal level overlap and submit it to the algorithms 
for finding the optimum value over the design space. We 
take the expectation of the design criterion over the prior 
distribution of the parameters so that prior uncertainty trans- 
lates into a spread of the design points. This approach is 
appropriate, because in the absence of data, the prior and the 
posterior distributions coincide: The prior is also called the 
preposterior in this context. Note that in this formulation we 
ignore the prior variance, say Sp. An alternative criterion is 

fRkdet[I(f) + Sp]-1/kP(P)dP. However, Chaloner and 
Verdinelli (1995) argue in favor of the criterion we use, 
because it allows different prior information to be used in 
the design and analysis and is appealing when a non- 
Bayesian framework is adopted for analysis. In addition, our 
criterion is based on an asymptotic approximation to the 
posterior, and the prior vanishes in that case. Our design cri- 
terion has been shown to have good properties (Atkinson 
and Donev 1992, pp. 214, 218). 

The optimization problem can be formally represented as 

mm DB(X), X 

subject to X having minimal level overlap, given f(P), the 
prior distribution of P3. The tools we use for determining the 
design that provides the largest information and satisfies 
minimal level overlap are relabeling and swapping, as devel- 
oped by Huber and Zwerina (1996). In addition, we propose 
the use of a procedure we call cycling. We conjecture that 
cycling may improve on Huber and Zwerina's (1996) algo- 
rithm. The reason that such heuristic procedures are used is 
that an exhaustive search over the entire design space is not 
feasible, except for small designs.2 The three stages of our 
algorithm-relabeling, swapping, and cycling-operate as 
stated in the next section.3 

Design-Generating Algorithms 

Relabeling permutes the levels of the attributes across 
choice sets. Take the first attribute and its levels across all 
choice sets. Take one particular permutation of the levels; 
for example, for three levels, this may be 2 3 1, one of the 
six possible permutations. Then reassign the levels of the 
attribute according to this permutation; that is, replace Level 
1 by 2, 2 by 3, and 3 by 1. Do the same for other attributes 
for one particular permutation of their levels. Then go back 
to Attribute 1 and try a different permutation of its levels, as 
well as for the other attributes. Thus, the relabeling algo- 
rithm searches for a combination of permutations for which 
the corresponding design has the smallest error (either Dp- 
or DB-error). (This is the same as in Huber and Zwerina's 
[1996] algorithm.) 

Swapping involves switching two attribute levels among 
alternatives within a choice set. Assume two alternatives. 
The algorithm starts with the first choice set, takes the level 
of the first attribute, and swaps it with the level of that attrib- 
ute in the second alternative. Then it does the same with the 
second attribute, and so on until the last attribute. Also con- 
sider simultaneous swaps for several attributes subsequently. 
Then, the algorithm proceeds to the second choice set and 
passes through all choice sets. If an improvement in infor- 

I We investigated the effect of the number of draws used on the efficiency 
of the generated designs: The difference in the number of subjects needed 
to achieve the same efficiency compared with a design based on 10,000 
draws was 2% or less. 

2For a class of small designs (i.e., 32/2/6), we experimented with a search 
over all possible designs with minimal level overlap, which is possible 
though time consuming. It appeared that the distribution of the Dp-error cri- 
terion is highly skewed and extremely peaked. Nevertheless, the heuristic 
search algorithms did a good job and recovered the optimum in 46% of the 
cases in 1000 runs, and in the remaining 54% it was within 3% of the opti- 
mum. There is no guarantee that this is also the case for larger designs, in 
which for an exhaustive search an impractical number of evaluations of the 
D-errors must be made. For example, in the case of the 34/2/15 designs, the 
total number of designs with minimal level overlap is approximately 1030. 

3Gauss codes for these algorithms are available from the authors. 
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mation occurs, the procedure returns to the first choice set 
and proceeds until no improvement is possible. (Our algo- 
rithm is slightly different from that used by Huber and Zwe- 
rina [1996].) 

Cycling is a combination of cyclically rotating the levels 
of an attribute and swapping them. The algorithm starts with 
the first attribute in the first choice set. It cyclically rotates 
the levels of the attribute until all possibilities are exhausted. 
Thus, if there are three levels, replace Level I with Level 2, 
Level 2 with 3, and Level 3 with I. Continue this until the 
original configuration is obtained again. Then apply a swap 
and cycle again until all possibilities are exhausted. Con- 
tinue in this manner by alternating swapping and cycling 
until all possibilities are verified. Then go on to the second 
choice set and so on until the last choice set. Then move to 
the second attribute and pass through all attributes proceed- 
ing in the same way as with the first attribute. At each stage, 
if an improvement is made, the procedure starts over from 
the first attribute in the first choice set. When no improve- 
ment is possible, the procedure stops. 

COMPARISONS AND MONTE CARLO STUDIES 

Comparison with Huber and Zwerina (1996) 
In this section, we compare Bayesian designs with the 

designs provided by Huber and Zwerina (1996; henceforth 
HZ). In addition, we investigate the incremental contribu- 
tion of the cycling algorithm over the relabeling and swap- 
ping algorithm. Consider the design from HZ of type 
34/2/I 5; that is, there are 15 choice sets, there are two alter- 
natives in each set with four attributes, and each attribute has 
three levels: 1, 2, and 3. We use effect coding that assigns [1 
0], [0 1], and [-1 -1] to the levels 1, 2, and 3, respectively. 
Assume the coefficients to be fixed at P = [-1 0 -1 0 -1 0 

-I 0]', the values used by HZ. As HZ explain, this set of 
coefficients produces choice probabilities that are the same 
when, instead of coding, numerical values are assigned to 
the attribute levels and the coefficients are all equal to one. 

The leftmost column of Table 2 presents the design deter- 
mined by HZ (HZ, Table 3, p. 313) from relabeling a start- 
ing design. Note that we use the relabeled design and not the 
swapped design (which was reported by HZ to provide a 
lower Dp-error). The reason is that HZ only provide the 
complete design generated by relabeling, and we believe 
that it provides a useful benchmark.. (Subsequently, we pre- 
sent a Monte Carlo study in which we use the standard 
design obtained through relabeling, swapping, and cycling 
as a baseline.) In the bottom row of Table 2, the 

D,- 
and DB- 

errors are presented, which reflect the efficiencies of the 
designs. Table 2 also presents the improved Bayesian rela- 
beled, swapped, and cycled designs, denoted B 1, B2, and 
B3, respectively. Because prior management information is 
lacking, for these Bayesian designs we take the parameters 
of the prior distribution as follows: We fix the mean at Io 
provided by HZ and take the square root of the covariance 
matrix X•/2 equal to the identity matrix. The designs B 1, B2, 
and B3 are obtained by minimizing the DB-error (see Equa- 
tion 6), where 3 -~ 

N(30,-0). 
Note that this procedure 

reveals the improvement obtained only by accommodating 
parameter uncertainty through a prior distribution, because 
the mean parameter values are the same for the standard and 
Bayesian procedures. We believe that neglecting that uncer- 

tainty is logically inconsistent, because if the parameters 
were precisely known, no design needs to be generated. 

Visual inspection of the designs in Table 2 shows that all 
designs are reasonable in terms of composition of profiles 
and choice sets. The Bayesian design produces the lowest 
DB-error, which is expected because that is the criterion 
minimized by it. But it also produces a lower Dp-error, 
which makes it preferable over HZ's relabeled design. Note 
that all Dp- and DB-errors are substantially lower for the 
Bayesian designs produced by cycling than for the designs 
produced by relabeling and by relabeling and swapping.4 
This illustrates the superior performance of the proposed 
cycling algorithm. 

Monte Carlo Studies 

In the previous comparison, the Dp- design errors were 
computed at the specific parameter values assumed in con- 
structing the respective designs. It is our contention that the 
Bayesian approach yields more efficient designs over a wide 
range of the parameter space. To investigate this, we conduct 
a Monte Carlo study that compares, in terms of the Dr-error, 
the performance of the standard HZ-type design with the 
Bayesian design. We construct the standard design with four 
attributes and three levels, analogous to HZ, in that we use 
relabeling, swapping, and cycling in its construction. Thus, 
the comparison of the Bayesian design with the standard 
design is unconfounded by the optimization procedure. All 
designs are based on 15 choice sets with 2 alternatives. In 
the Monte Carlo study, we investigate the sensitivity of the 
Bayesian design to the specified prior distribution as fol- 
lows: For both the standard and the Bayesian designs, we 
choose 3o as defined in the previous section. But because the 
performance of the Bayesian design may be sensitive to the 
choice of 1o in the prior distribution, we vary that parameter 
in the Monte Carlo study. In particular, we construct six 
Bayesian designs, using o = yI~lk with six different values: 

(Yo = .10, .25, .50, .75, 1.00, and 2.00. We draw 1000 true 
parameter vectors from the normal distribution, for each of 
36 grid points, with a mean Po and a standard deviation 
varying between 0 and 5 on the grid. At each of the 36,000 
draws, we evaluate the Dp-errors of the standard and the six 
Bayesian designs. 

To assess the relative performance of the Bayesian 
designs, we compute the increase in the number of respon- 
dents needed for the standard design to have the same Dp- 
efficiency as the Bayesian design. This measure, if positive, 
reflects by what percentage we can reduce the number of 
respondents using a Bayesian design in order to obtain esti- 
mates that are as efficient as those from the standard design. 
(If it is negative, it shows by what percentage we should 
reduce the number of respondents for the standard design in 
order to obtain the same efficiency as with the Bayesian 
design.) Note that we again compare the designs on the cri- 
terion that is most favorable to the standard HZ design, 
because that is the design that maximizes the Dp-efficiency. 

Figure 2 shows the extent to which the Bayesian design is 
more efficient. The standard deviations of the true parame- 
ters, reflecting their variation around the ones assumed in 
design construction, are shown on the x-axis, and the differ- 

41n general, cycling improves over swapping for designs in which the 
number of alternatives in a choice set is not equal to the number of attrib- 
ute levels. 
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Table 2 
STANDARD AND BAYESIAN 34/2/15 DESIGNS WITH IMPROVED EFFICIENCY 

HZ: standard BI: Bayesian B2: Bayesian B3: Bayesian 
relabeled relabeled swapped cycled 

Attributes Attributes Attributes Attributes 
Choicet Poie 1 2 3 41 2 3 42 3 42 3 
Set Profile 1 2 3 4 / 2 3 4 / 2 3 4 / 2 3 4 

I I 3 2 3 2 2 1 2 1 2 1 2 1 2 I 2 ! 
I I 3 2 I 1 2 I 2 I 2 I 2 1 2 1 2 

2 1 3 1 2 I 2 3 I 2 2 I I 2 2 2 1 2 
1 1 2 1 3 1 1 3 3 I 3 3 3 I 1 3 3 

3 1 3 3 2 3 2 2 I 3 2 2 1 3 2 2 1 3 
I 1 1 1 2 1 3 3 I 1 3 3 1 I 3 2 I 

4 1 3 2 1 1 2 1 3 2 2 1 3 2 2 3 3 2 
S 1 3 3 3 I 2 2 3 1 2 2 3 I 1 2 3 

5 3 1 1 2 2 3 3 1 2 3 2 1 2 2 2 1 

I 1 2 3 1 I 1 2 2 1 I 3 2 I I I 2 

6 1 I I 2 2 I 3 1 I 1 3 1 I 2 3 I I 
I 2 2 I 1 3 1 3 2 3 1 3 2 3 I 2 2 

7 1 1 2 3 3 1 1 2 3 1 I 2 3 1 2 2 3 
S 2 3 2 2 3 2 1 1 3 2 1 1 2 3 1 I 

8 1 1 I 1 1 3 3 2 I 3 3 2 3 1 3 2 
S 2 2 3 3 3 I 2 3 3 I 2 3 2 2 2 3 

9 1 1 3 1 3 1 2 3 3 1 2 3 3 2 2 3 2 

I 2 I 3 2 3 3 2 1 3 3 2 1 3 3 2 1 

10 1 3 3 1 1 2 2 2 1 2 2 2 1 2 2 2 

I 2 I 2 3 3 3 1 3 3 3 I 3 3 1 1 3 

11 2 2 2 2 3 I 1 1 31 I 1 3 2 1 1 

I 3 3 I I 2 2 3 2 2 2 3 2 I 3 3 2 

12 1 2 3 3 I 3 2 2 2 3 2 2 2 2 1 2 2 
S 3 1 2 3 2 3 1 3 2 3 13 1 3 I 3 I 3 

13 2 2 2 3 3 1 1 3 3 1 I 3 3 3 2 2 
S 3 3 1 2 2 2 3 I 2 2 3 I I 2 3 1 

14 1 2 3 I 2 3 2 3 1 3 2 3 1 3 2 3 1 
S 3 1 3 I 2 3 2 2 2 3 2 2 2 3 2 2 

15 2 1 3 3 3 3 2 3 3 3 2 1 3 2 2 1 
S 3 2 2 2 2 I 1 I 2 1 I 3 2 1 1 3 

Dp-error .296 .281 .272 .263 
DB-error 1.121 1.052 .993 .834 

Table 3 
ATTRIBUTES AND LEVELS OF THE SPORTS CLUB MEMBERSHIP APPLICATION 

Attributes 

Levels Location Period Activities Clubs Price 

1 A 1 trimester General No clubs 40 
2 B 2 trimesters Fitness + courses Student clubs 75 
3 Both 3 trimesters All 20% discount 125 

ence in the numbers of subjects needed for the Bayesian 
design relative to the standard design is on the y-axis. The 
different panels show the results obtained for different val- 
ues of (0. Figure 2 shows that if the prior distribution 
assumed in the Bayesian design reflects little uncertainty 
(i.e., (o0 = .1), the two designs need about the same number 
of subjects. This is to be expected, because it corresponds to 
a situation in which the parameter values are almost exactly 
known. (For (o= .05, the Bayesian and the standard designs 
are exactly the same.) If the prior distribution assumed for 

the parameters reflects more uncertainty (i.e., for (0 = .25 
and .5), a reduction of approximately 10% in the number of 
subjects is obtained in most cases. Each of the panels shows 
that if the true parameters are very close to the assumed ones 
in generating the designs (left-hand side of the graphs), the 
standard design tends to do better. This seems intuitive: If 
the researcher knows the values of the coefficients with a 
high degree of certainty, then there is not much use in 
employing a Bayesian design construction method. These 
results reveal that overconfidence of managers in eliciting 
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Figure 2 
PERCENTAGE REDUCTION OF SUBJECTS NEEDED FOR THE BAYESIAN DESIGN COMPARED WITH THE STANDARD DESIGN WITH 

THE SAME EFFICIENCY 
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their prior beliefs may affect the constructed design seri- 
ously. For larger values of To, such as .75, 1.0, and 2.0, a 
substantial reduction of 15-22 is obtained. In our study, we 
provide only a lower bound for the relative performance of 
the Bayesian designs for three reasons. First, the Monte 
Carlo study reflects only the effect of including prior uncer- 
tainty on the parameter values, because the mean parameter 
values are the same for the standard and the Bayesian 
design. In practice, as we show subsequently, the Bayesian 
design may be appreciably better because it is based on dif- 
ferent mean parameter values derived from managers' 
beliefs. Second, we note that the true parameter values were 
generated from draws from normal distributions centered 
around the assumed parameter values, but with different 
standard deviations, as shown on the x-axis of the graphs. 
Even if the standard error is large, a substantial proportion 
of the true parameters will be generated close to the 
assumed ones because of the symmetric unimodal shape of 
the normal distribution, which thus provides relative advan- 
tage to the standard design. Third and finally, we evaluate 
the relative improvement of the Bayesian design in terms of 
the Dp- rather than the DB-error, which is to the advantage 
of the standard design. 

In the Monte Carlo study described previously, the design 
involves four attributes and three levels. How will the 
design-generating procedures perform for different numbers 
of attributes and levels? To answer that question, we conduct 
another Monte Carlo Study. On the basis of either three or 
five attributes and three or four levels of the attributes, we 
construct four possible design conditions. (All designs are 
based on 24 choice sets with 2 alternatives.) For both the 
standard and the Bayesian designs, we choose o3 as defined 
previously and use three different values: co = .20, 1.00, and 
2.00. Thus, we evaluate the performance of the Bayesian 
compared with the standard design under 12 conditions. For 
each of those conditions, we draw 1000 true parameter vec- 
tors from the normal distribution for each of 36 grid points 
(36,000 draws in total), all with a mean Po and a standard 
deviation varying on the grid between 0 and 5, as in the pre- 
vious study. At each draw, we evaluate the Dp-errors of the 
standard and the Bayesian designs and compute the increase 
in the number of respondents needed for the standard design 
to have the same Dp-efficiency as the Bayesian design. Note 
again that the criterion for comparison is itself most favor- 
able to the standard design. 

Figure 3 shows the results and reveals several interesting 
issues. First, it shows that when taking a small value of (o 
(i.e., .20), the Bayesian design provides only a minor 
improvement over the standard design, irrespective of the 
design condition. The reason is the very limited prior uncer- 
tainty on the parameters, which makes the designs converge. 
Second, the effect of the number of attributes is limited. It 
does seem, however, that for a larger number of attributes, 
the difference in performance of the Bayesian and the stan- 
dard design is less than the difference for a smaller number 
of attributes. The effect of the number of levels is even more 
interesting: If the attributes in the design are defined at a 
larger number of levels, the improvement of the Bayesian 
design over the standard design is larger. This holds in par- 
ticular for the case in which the number of attributes is 
larger. Here, we see improvements that may range up to 
30%-40%. A preliminary conclusion that emerges from this 
study is that in particular, for more complex designs (i.e., the 

ones with larger numbers of attributes and levels), the 
improvements of using a Bayesian design procedure may be 
substantial. These results will need to be corroborated in 
larger Monte Carlo studies that employ a wider range of 
numbers of choice sets, attributes, and levels. 

EMPIRICAL APPLICATION 

In this section, we illustrate the elicitation and use of prior 
information as well as the efficiency gain from the Bayesian 
design procedure. The application involves the design of a 
new university sports club membership card for students. 
The study was conducted among managers of the sports 
center and students of the University of Groningen in the 
Netherlands. On the basis of depth interviews with man- 
agers and students, five attributes were identified as most 
important for the design of a new membership card. The 
attributes and the levels are presented in Table 3. 

Two managers of the university sports center agreed to 
participate in the elicitation task. They were asked to provide 
a subjective estimate of the percentage of students that 
would choose a card with one of the three levels of a certain 
attribute (considering all possible combinations of attributes 
and levels available). They did so using the paper-and-pencil 
version of the elicitation task described previously, of which 
an example is provided in Figure 1. We obtain five triples of 
graphs containing managers' subjective estimates of choice 
probability intervals. The prior beliefs of the two managers 
were qualitatively similar, but the exact lower and upper 
bounds were not completely consistent, which made us 
decide to combine them conservatively by taking the smaller 
values of the elicited lower bounds and the higher values of 
the upper bounds. These minimax probability bounds further 
alleviate possible overconfidence. We estimate the upper and 
lower bounds of the prior distribution of the parameters from 
the subjective probability intervals as follows: We take one 
attribute and denote its coefficients by P3 and P32. We code 
the first level of the attribute as [1 0], the second as [0 1], and 
the third as [-1 -1]. We assume that the minimax probabil- 
ity bounds provide 95% symmetric confidence intervals 
from a normal prior distribution and compute the mean and 
the variance from them. We then draw from that estimated 
normal prior distribution (truncating it from the left at zero 
to avoid negative logarithms). The marginal prior probabili- 
ties of the three levels can be expressed, respectively, as 

(8) n= exp(P,) 
exp(P3) + 

exp(P2)+ exp(-P, 
- 

32)' 

2 exp(32) and 
exp(13,) + exp(P2) + 

exp(-13, 
- p2)' 

S= exp(-13, - 32) 
Sexp(P3,)+ exp(32)+ exp(-P, - 

12) 
Inverting these formulas for each draw r = 1,..., R from the 
prior distribution of the probabilities, we compute the 
parameters as 

2 1 1 (9) P = - In 
•-n 

In - In 
tr, and 3 3 3 

1 2 1 

Sin 3 + - In 3 - in. 32 7 - 3- 
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Figure 3 
PERCENTAGE REDUCTION OF SUBJECTS NEEDED FOR THE BAYESIAN DESIGN COMPARED WITH THE STANDARD DESIGN WITH 

THE SAME EFFICIENCY 
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This way, we obtain draws of the parameters from the prior 
distribution that we use in the Bayesian design procedure as 
described previously. Notice the interesting property of the 
expressions in Equation 9 that they are invariant to multipli- 
cation of trl by a scalar. Consequently, even if the managers' 
subjective probability estimates do not sum to one, we do 
not need to normalize them. 

Comparison of Design Efficiency 
We construct a Bayesian design and a design according to 

HZ's procedures (but using our algorithms). These designs 
have 15 choice sets with two alternatives each. In our com- 
parison, we want to establish the effect of eliciting prior infor- 
mation from managers and using that in the Bayesian design. 
Therefore, we did not want to use the elicited prior informa- 
tion in constructing the HZ-type design and needed to set val- 
ues for the parameters in that design. We specified them in a 
way that is analogous to what was proposed by HZ. These 
parameter values are shown in the second column of Table 4. 
We believe they are intuitive and appropriately reflect the 
signs that we expect for the coefficients. Obviously, other 
choices are possible. The prior parameter estimates, obtained 
as the median of the minimax subjective probability bounds 
obtained from the managers, are presented in the third column 
of Table 4; the fourth column provides the 95% credible inter- 
val. Not all the prior estimates obtained from the managers are 
intuitive, possibly reflecting the managers' difficulty in 
expressing subjective probabilities formally. The constructed 
designs are presented in Table 5. 

On the basis of the two designs, a paper-and-pencil con- 
joint choice questionnaire was developed. The choice sets 
from both designs were mixed in the same questionnaire, in 
randomized order, so that the questionnaire contained 30 
two-alternative choice sets. A sample of current membership 
card owners was selected; usable responses were obtained 
from 58 subjects (undergraduate students of marketing). The 
estimates of the parameters from the two separate designs 
and their standard errors are presented in Table 4. 

Notice that the prior estimates based on the managers' 
beliefs are not close to the estimated values in all cases; in 
particular, the estimated coefficients of Clubsl and Pricel 
are substantially outside of the 95% credible interval. This 
indicates that the managers estimated the percentage of sub- 
jects that chose that product to be lower than for the refer- 
ence level (attribute level 3), but it was higher in the sample. 

The Dp-errors of the standard and Bayesian designs are .31 
and .27, respectively, so that the Bayesian design is approx- 
imately 13% better in this application. This is corroborated 
by an examination of the estimated asymptotic standard 
errors in Table 4. For two parameters, the standard error esti- 
mates obtained from the Bayesian design are the same or 
slightly larger; for the other parameters, the asymptotic stan- 
dard errors are 30%-50% lower. In addition to yielding dif- 
ferent precision, the parameter estimates of the two designs 
are also different. Because both designs provide consistent 
estimates, these differences are due to chance fluctuations. 
However, because the standard errors for the HZ-type design 
are larger, the probability that these estimates are farther 
from the true ones is larger. We observe substantial differ- 
ences in the estimates for six of ten coefficients-in partic- 
ular for Period2, Activitiesl, Clubsl, and Clubs2 and to a 
lesser extent Activities2 and Price l. These differences in 
coefficients may have important implications if manage- 
ment wants to implement the results of the study in design- 
ing a new membership card. For example, for the Clubs 
attribute, on the basis of the standard design, management 
may conclude that differences in customer preference for the 
three levels are negligible and opt for the simplest, low-cost 
level. The estimates from the Bayesian design show, how- 
ever, that there is a strong preference for Clubs2. The prob- 
ability of constructing a suboptimal product from the stan- 
dard design is substantially larger than from the Bayesian 
design results, which is clearly undesirable. 

We also compare the two designs using the measures 
employed in the Monte Carlo study, as presented in Figure 
4. The parameter estimates presented in Table 4 have a com- 
puted standard deviation from the prior values (Table 4) of 
.47.5 Figure 4 shows that the percentage reduction in the 
number of subjects a researcher expects to obtain through 
the Bayesian design for a standard deviation of .47 from the 
true parameters is approximately 35%, so the actual reduc- 
tion of 13% we happened to observe in our sample is on the 
low end. Figure 4 is constructed on the basis of the standard 
and the Bayesian designs and the prior estimate of the 
parameter, and this enables us to predict the efficiency of the 
Bayesian design compared with the standard design. For 

5This number is given by the ratio of the Euclidean distance of the prior 
estimates from the true value and the average Euclidean distance of uni- 
variate normal random 10-vectors from the origin, which is 3.085. 

Table 4 
PRIOR VALUES, PARAMETER ESTIMATES, AND STANDARD ERRORS 

Estimates of Parameters and Stanmdard Errors 

Prior Parameters HZ-Type Design Bayesian Design 

HZ-Type Bayesian 95% Standard Standard 
Coefficients Design Design Interval Parameters Errors Parameters Errors 
Location I -1.0 .272 (.141, .802) .598 .098 .559 .059 
Location2 -1.0 -.617 (-1.683, -.350) -.872 .114 -.706 .082 
Period I -1.0 -.291 (-1.336, -.331) -.674 .111 -.652 .058 
Period2 .0 -.510 (-1.336, .368) .000 .053 .111 .062 
Activities 1 -1.0 .007 (-.035, .270) .004 .088 -.087 .045 
Activities2 -1.0 -.303 (-.828, -.217) -.313 .104 -.213 .056 
ClubsI -1.0 .649 (.421, 1.338) .011 .112 -.277 .070 
Clubs2 .5 .190 (-.191, .310) .181 .078 .487 .053 
Price I 1.0 -.331 (-.528, -.244) .597 .111 .452 .056 
Price2 .0 .368 (.234, .651) -.051 .050 -.01 1 .052 
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Table 5 
DESIGNS USED IN THE EMPIRICAL APPLICATION 

Standard Design Bayesian Design 

Attributes A ttribu tes 
Choice 
Set Profile I 2 3 4 5 1 2 3 4 5 

1 
! 

3 2 1 2 3 1 3 1 2 3 
11 1 3 3 1 2 3 1 3 1 2 

2 I 2 1 2 3 2 1 I 1 3 2 
II I 3 1 1 3 3 2 2 1 3 

3 I I I 1 3 1 3 3 1 3 1 
11 2 3 2 2 2 1 1 2 2 3 

4 1 3 1 3 1 3 2 1 3 1 3 
11 2 2 2 2 1 1 3 2 2 1 

5 1 2 1 3 2 3 2 2 1 2 2 
1 1 2 2 3 1 1 3 3 3 1 

6 1 3 2 1 3 1 1 2 3 1 1 
11 1 3 3 2 3 3 3 1 3 3 

7 I 2 2 3 1 2 1 2 1 I 2 
II I 3 1 2 1 2 3 3 2 1 

8 1 I I 3 2 2 2 3 1 1 2 
11 3 3 2 1 3 3 2 3 2 3 

9 I 3 2 1 1 2 1 1 3 3 2 
11 2 3 2 3 1 2 2 1 1 1 

10 I1 3 2 2 2 2 3 3 2 2 
11 2 1 3 1 1 1 1 2 1 1 

11 2 2 1 2 1 3 2 1 2 1 
11 3 1 2 3 3 2 3 2 1 3 

12 1 3 1 1 1 3 1 2 2 1 
II I1 2 3 3 3 1 2 3 3 3 

13 1 2 3 1 3 2 2 3 2 3 2 
11 3 1 2 2 3 3 1 1 2 3 

14 1 I 2 3 1 1 2 1 1 1 1 
11 3 1 1 3 2 3 2 2 3 2 

15 I 3 1 2 1 2 1 2 3 2 2 
11 2 3 1 3 3 3 I 2 3 3 

example, if the true parameter is at a distance corresponding 
to standard deviations between 3 and 5 from the prior values 
(computed on the basis of the Euclidean distance), we 
expect that the Bayesian design needs 10%-14% fewer sub- 
jects. As the true value gets closer to the prior estimate, the 
measure in Figure 4 improves dramatically. This is to be 
expected, because the more precise the prior estimate, the 
more efficient is the Bayesian design constructed from it. 

Comparison of Predictive Validity 
Predictive validity has been of eminent importance in the 

evaluation of conjoint models in practice. Although the 
design-generating procedures aim at improving the effi- 
ciency of the estimates, not the predictive capacity of the 
estimated models, improved efficiency will translate into 
better expected predictive validity to a certain extent, as we 
show theoretically and empirically. The criterion we use for 
assessing the predictive validity of the designs is the 
expected mean square error (EMSE) of the choices in hold- 
out choice sets. We use the EMSE, because it is not based on 
the point estimates but takes the entire distribution of the 
coefficients into account. Formally, 

(10) EMSED [p(D) -][p(D)- n(D)d D, 

where D = S or D = B; EMSEs and EMSEB denote the 
EMSE of the predicted choice probabilities of the standard 
and Bayesian designs, respectively; n is the vector of choice 
frequencies in the holdout choice sets; p(OD) is the corre- 
sponding vector of predicted probabilities computed for 
parameter values 3 = s or 8iB according to Equation 2; and 
f(OD) is the distribution of the estimates. It can be seen from 
Equation 10 that if the distribution of the estimates f(PD) is 
more concentrated around the mean, as we expect for the 
Bayesian design, and the Bayesian parameters are more pre- 
cise, the EMSE will be smaller. The expectations in Equa- 
tion 10 can be approximated by averaging over a large num- 
ber of draws from the distribution of the estimates, as is 
done for the DB-error as explained after Equation 6. We 
approximate these distributions by the asymptotic distribu- 
tion, which is normal, using the corresponding point esti- 
mates for the mean and variance. We use the choices of the 
respondents in a holdout design consisting of five choice 
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Figure 4 
PERCENTAGE REDUCTION OF SUBJECTS NEEDED FOR THE 

BAYESIAN DESIGN COMPARED WITH THE STANDARD 
DESIGN WITH THE SAME EFFICIENCY IN THE APPLICATION 
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sets, each of which has two alternatives in the empirical 
application. The numerical values obtained for the EMSEs 
are EMSEs = .118 and EMSEB = .092. 

The parameter estimates obtained from the Bayesian pro- 
cedure have 22% lower expected prediction error than those 
obtained from the standard procedure. This result adds a 
new aspect to the design of efficient choice experiments. 
The Bayesian procedure can produce estimates that are 
more precise in predicting choice probabilities of new pro- 
files, and the magnitude of the improvement obtained from 
the design is often larger than what has resulted from 
improvements in the MNL model itself. 

CONCLUSION AND DISCUSSION 

Few will contest that managers have relevant knowledge 
on the behavior of their customers. It therefore may be sur- 
prising that managers' subjective beliefs have hardly been 
used in conjoint experiments. Whereas managers are rou- 
tinely consulted by market researchers to select the attrib- 
utes and levels for a conjoint (choice) experiment, the poten- 
tial of using their beliefs about the attractiveness of 
attribute-level combinations to customers has remained 
largely untapped. By designing conjoint experiments based 
on managers' subjective beliefs, we have addressed the 
long-standing circular problem that in order to design an 
experiment to estimate choice model parameters, those 
parameters need to be known. Bayesian theory enables us to 
construct designs that have higher efficiency at parameter 
values that are judged likely by managers. In our empirical 
illustration, not only did a Bayesian design-generating pro- 
cedure produce choice designs that resulted in lower esti- 
mated standard error than procedures proposed heretofore, 
but it also provided higher predictive validity. The increased 
efficiency of the Bayesian design can be decomposed into 
two components. First, there is the efficiency gain due to 

incorporating the beliefs of the managers on the choice 
probabilities of products that possess certain attribute levels, 
and second, an improvement arises from accommodating 
managers' uncertainty about the values of those probabilities 
in the population. 

Our study reveals that accurate elicitation of uncertainty is 
an important issue, in particular with regard to the overconfi- 
dence effect. We have made an attempt to alleviate overcon- 
fidence in three ways. First, we have used an elicitation pro- 
cedure that stimulates respondents to state their true beliefs 
and minimizes overconfidence. Second, we have combined 
the subjective confidence bounds of several managers using 
a minimax rule, so that a parameter value that is considered 
plausible by any of the managers is included in the confi- 
dence set. Third, we have taken the resulting confidence set 
of the parameters as holding with 95% certainty. All of these 
procedures produce a relatively wide plausible interval for 
the parameters, which improves the efficiency of the designs. 
However, the procedures for elicitation (Van Lenthe 1993) 
and combination (Almond 1996) of belief intervals from sev- 
eral judges need more study. Further research should aim at 
producing elicitation procedures that enable similar contexts 
to be invoked for the management judgments and consumer 
choice tasks, which would ensure maximal congruity 
between the two (Schwartz and Bohner 2001). Our procedure 
to produce the prior parameter distribution from subjective 
probability judgments should be further improved and its 
sensitivity to several aspects, such as the assumed normal 
prior distribution of the probabilities, investigated. 

Then, the Bayesian design-generating procedure can be 
extended in several directions. First, effective design-gener- 
ating algorithms need to be developed that can also be used 
to determine optimal designs that include a base or no- 
choice alternative. This problem is important because these 
types of designs are popular in the conjoint choice literature. 
Second, following other design-generation procedures cur- 
rently provided in the literature, we consider the size of the 
choice set to be fixed by the researcher before design con- 
struction. It may be desirable to include the size of the 
choice set in design construction. However, presently this is 
hampered by the combinatorial explosion of the designs to 
be searched over, and the issue awaits the development of 
better optimization algorithms. Third, the relabeling, swap- 
ping, and cycling algorithms can be further improved, for 
example, through the application of genetic or data-correct- 
ing algorithms (Goldengorin and Sierksma 1999). The pos- 
sibility of implementing such procedures for our designs 
needs further investigation. Fourth, we believe it is desirable 
to investigate further the performance of procedures on the 
basis of different efficiency measures derived from the 
information matrix. Fifth, we wish to mention the possible 
extension of our method to the design of logit models that 
deal with consumer heterogeneity, such as the mixed logit, 
the latent class logit, or the hierarchical Bayes logit models 
(Wedel et al. 1999). The construction of optimal designs for 
the models that include heterogeneity, analogous to the 
designs proposed by Lenk and colleagues (1996), has not 
yet been addressed and poses interesting yet computation- 
ally intensive problems. 
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APPENDIX: A SIMPLE NUMERICAL EXAMPLE 

In this Appendix, we present a simple numerical example 
of constructing a Bayesian design by eliciting prior infor- 
mation from managers. For this purpose, we consider a 
small design with three choice sets, each having two alter- 
natives. The alternatives have two attributes: Attribute I at 
three levels denoted 1, 2, and 3, coded [1 0], [0 1], and [-I 
-1], respectively, and Attribute 2 at two levels, I and 2, 
coded -1 and i. We present our algorithm in the following 
seven steps. 

1. Elicitation of Prior Information from Managers 

Suppose that one manager evaluates the marginal proba- 
bilities for the three levels of Attribute I and the two levels 
of Attribute 2. Denote these probabilities by r ll, 12, n13 
and )t21, 22, respectively. Denote the coefficients correspon- 
ding to the coded version of Attribute 1 by 3I1 and 312 and 
the coefficient of Attribute 2 by 132. Expressions of the mar- 
ginal probabilities are given in Equation 8 for (the three- 
level) Attribute i, and the marginal probabilities correspon- 
ding to (the two-level) Attribute 2 can be expressed similarly 
to Equation 8. These marginal probabilities corresponding 
to levels -1 and I, respectively, are 

exp(-P32) exp(02) 
S exp(-p32)+ exp(032)' 22 = exp(-02) + exp(0P2) 

By inverting these, we obtain 32 
= ? x inTit - c ? X InIt21. From the manager's statements of the lower and upper 

bounds, we obtain distributions of the probabilities. If we 
draw R probability values, nr21 and 1t•2, r = i ...R, from 
these distributions, we can compute the parameters P2 simi- 
larly to Equation 9: 

I 
R 

1 (Al) pr 
= I Jn 

-- 
In rr,. 2 2 

Suppose that the probability bounds obtained from the man- 
ager are [.35, .65] for Ti11, [.1, .7] for it12, [.05, .75] for 

tl13, 
[.45, .95] for it21 and [.15, .55] for nt22. From these proba- 
bility bounds, we determine the mean and variance of each 
probability, assuming that it has a normal distribution and 
that the probability bounds are 95% symmetric confidence 
intervals. The mean pt is given by the middle of the lower 
and upper probability bounds. The variance can be com- 
puted as 02 = [(7t - 1t)/-l1(.025)]2, where n is the lower 
probability bound and D-I1 is the inverse of the standard 
normal distribution function. We obtain the following 
numerical values: ll = .5, ol = .077, l12= .4, o12= .153, 
JL03 = .4, o13 = .179, t21 = .7, 012 = .128, t22 

= .35, and 

022 = .102. 

2. Drawing Values of the Parameters 

Using Equations 9 and Al, we draw R = 3 values of Il l, 
112, and 132 by drawing values of the probabilities. These are 
presented in Table Al, along with the probability draws. 

3. Generating a Design to Start the Procedure 

The starting design can be obtained by generating ran- 
domly a level-balanced design with minimum level overlap. 
Suppose this yields the design Xo and its coded version Z: 

I I 2 -1 1 0 1 I 
0 I -1 

X 
2 1 o0 1 I S3 -1 Z = - - - I~ -I -1 1 
3 1 1 0 -1 
I -1 

X0 consists of three blocks separated by horizontal lines. The 
blocks represent the choice sets, which have two alternatives 
specified in the rows, and the columns represent the attributes. 

4. Computation of the DR-Error 

We approximate the DB-error of the design Xo by ifB(Xo) 
as in Equation 7 using Pr, P2, and 13, for r = I, 2, 3 gen- 
erated in Step 2: lDB(Xo) 

= 
-3= IdetI(Pr)-lik, where Pr= (31' 

Pr12, p)' and k = 3, the dimension of Pr. The information 
matrix I(3r) is computed as in Equation 4 by taking N = 1. 
Equation 4 needs to be adapted to the coded version Z of the 
design Xo. Denote the choice sets in Z by 

Z, = 10 ]Z2 
-1 Z3 = - 

0 - 

For the first draw, r = I, following Equation 4, we find that 

(3 I1) =-- 3= Zs(Ps - PsPs)Zs, where ps is the vector of probabil- 
ities in choice set s and Ps is the corresponding diagonal matrix. 
Using Equation 2, we obtain the following for choice set s = 1: 

Pl = L.475, PI -PIP 
= .249 x _ and 

.178 -.178 .3561 
Z(P - pp')Z, = -. 178 .178 -.356 . 

[.356 -.356 .712J 

Repeating the computations for choice sets 2 and 3 and sum- 
ming the three matrices yields the information matrix corre- 
sponding to r = 1: 

[1.097 .427 -.2721 
1(1') = .427 .772 -.3781, 

L-.272 -.378 1.922J 

where detl(pl)-1/3 = 1.119. Similar computations for r = 2 
and 3 yield detl(32)-1/3 = .954 and detI(p3)-1/3 = 6.409. To 
obtain the numerical value of IB(Xo) for the parameters in 
Table A I, we average these numbers to get iB(Xo) = 2.827. 

5. Relabeling 

Now we apply relabeling to the design Xo. Attribute I has 
three levels, and therefore there are six permutations corre- 
sponding to these. Attribute 2 has two levels, so the number 
of their permutations is two. This yields a total of 6 x 2 = 12 
relabeled designs, including Xo as the identically relabeled 
design. Suppose that the first six relabeled designs have their 
second column fixed and the first columns permuted, and 
the next six designs have their second columns permuted as 
well. For example, the relabeled design XR (first entry in 
Table A2) corresponds to the permutation 

1--1, 
2-3, 3-2 

when the second column is fixed. For the parameter values 

This content downloaded from 193.0.111.61 on Wed, 20 May 2015 19:50:27 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Designing Conjoint Choice Experiments 443 

in Table Al, the fB(Xo) values corresponding to the 12 rela- 
beled designs are 2.827, 2.657, 2.827, 2.657, 2.827, 2.657, 
2.657, 2.827, 2.657, 2.827, 2.657, and 2.827. The lowest 
value of these is 2.657, which occurs first for the second 
relabeled design, which happens to be exactly XR mentioned 
previously. Note that the flD(X) values of all relabeled 
designs are equal to either 2.657 or 2.827, because the 
designs are equal to Xo or XR apart from the order of their 
choice sets and the order of the alternatives in the choice 
sets. (The reason for having only two different relabeled 
designs is that the design Xo is very small and therefore it 
happens that the levels of the first attribute form a cycle in 
the three choice sets. This is unlikely to occur in the case of 
designs with a common size.) The design XR is stored by the 
algorithm as the best relabeled design and forwarded to the 
swapping procedure. Table A2 presents this design along 
with other designs discussed subsequently. For each design, 
the D)B(X) value is given below the design in Table A2; for 
some designs, such as XR, we also use symbols, which are 
shown above the design in Table A2. 

6. Swapping 

Swapping within a choice set in this example involves 
swapping only one attribute. This is because there are only 
two attributes and two alternatives, and therefore swapping 
both attributes is equivalent to changing only the order of the 
alternatives, which implies no change of the I)B(X) value. 
The algorithm starts with the first choice set of XR; swaps 
the levels of the first attribute corresponding to the two alter- 
natives that obtain the new design Xsl (Table A2); and com- 
putes BD(Xsl), which is equal to 19.961. Because this is 
higher than IDB(XR) = 2.657, we do not retain Xsl. Next we 
employ swapping to the second choice set of XR. This yields 
the design Xs2 (Table A2) with 

DaB(Xs2) 
= 2.061. Because 

this is lower than 2.657, we retain this design and start the 
swapping procedure over, applying it to Xs2. Swapping the 
first, second, and third choice sets yields the designs pre- 
sented in the lower part of Table A2, with 'lB(X) values 
5.101, 2.657, and 2.100, respectively. Because all these are 
higher than 2.061, at each step the designs obtained are 
dropped and the swapping is applied to XS2. After swapping 
the third choice set, no other swaps are possible, so the algo- 
rithm stores Xs - XS2 as the best swapped design and goes 
on to cycling. 

7. Cycling 
In this example, similar to swapping, cycling involves 

only the levels of the first attribute. The algorithm starts in 
the first choice set by applying cycles to the levels of the 
first attribute and then continues with a swap and again with 
cycles. Then it goes on to the next choice sets. In each cycle, 
the levels of the first attribute are modified in the following 
way: 

1--2, 2--3, 
3-1. We start with the first choice set of 

Xs. The first cycle yields the design XcI, shown in Table A3. 

Because two choice sets of this design are identical, the cor- 
responding information matrix is singular; therefore 

%D(Xcl) = 00, so this design does not beat Xs. We continue 
with another cycle applied to XlI and obtain XC2 (Table A3) 
with DB(XC2) = 3.473, so this design is not retained either. 
A further cycle applied to this design would lead exactly to 
Xs; therefore, a swap is applied to Xs next. This leads to XC3 
(Table A3) with )aB(Xc3) = 5.101. Because this value is not 
lower than )B(Xs) = 2.061, the design is not retained. Next 
we cycle XC3 and obtain XC4 (Table A3) with %)B(XC4) = 
1.865. This is an improvement compared with Xs, so we 
retain XC4 and continue by cycling the first choice set of 
XC4. The five designs obtained are presented in the middle 
part of Table A3. Because none of these designs improve on 
the I)B(XC4) = 1.865 value, they are dropped, and the algo- 
rithm continues with the second choice set. The designs 
obtained are displayed in the lower part of Table A3. 
Because the fourth design, denoted XC5, yields a lower 
value than )B(XC4) = 1.865, the algorithm continues with 
the first choice set of XC5. It turns out that the five designs 
obtained from cycling the first choice set yield the I)B(X) values 2.061, 3.239, 00, 2.657, and oo. Cycling the second 
choice set of XC5 yields designs with DB(X) values 0, 

6.574, 5.841, oo, and 1.865. Cycling the third choice set 
yields designs with I)B(X) values 6.701, oo, oo, 2.100, and 
3.755. None of these is lower than 1.828, and because all 
possible cycles are verified, the algorithm stops. Conse- 
quently, we have found the best design, that is, Xc - Xc5. 

Table A2 
RELABELED AND SWAPPED DESIGNS 

XR XsI Xs2 

I I 3 I I I 

3 -I I -I 3 -I 
3 I 3 1 2 1 

2 -1 2 -1 3 -1 

2 2 I 2 I 
I -1 1 -1 1 -1 

2.657 19.961 2.061 

3 I I 1 I I 

1 -I 3 -1 3 -1 

2 I 3 1 2 I 
3 -1 2 -1 3 -1 

2 1 2 1 1 1 

1 -1 1 -1 2 -1 

5.101 2.657 2.100 

Table Al 
PROBABILITY AND PARAMETER VALUES 

r r rrpr r r ICI112 IE13 nE2 
E 

22 0-12 0 

r = .693 .174 .087 .807 .243 1.1 -.2 -.6 
r = 2 .319 .096 .785 .518 .518 .1 -1.1 .0 
r = 3 .404 .666 .030 .919 .031 .7 1.2 -1.7 
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Table A3 
CYCLED DESIGNS 

Cycles Swap Cycles 

XcI XC2 XC3 XC4 - 

2 1 3 1 3 1 1 1 

1 -1 2 -1 1 -1 2 -1 

2 1 2 1 2 1 2 1 

3 -1 3 -1 3 -1 3 -1 

2 1 2 1 2 1 2 1 

I -I I1 -1 I -I 1 -I 
00 3.473 5.101 1.865 

2 1 3 1 2 -3 1 1 1 
3 -1 I 1 -1 1 -1 2 -1 3 -1 

2 1 2 1 2 1 2 I 2 1 

3 -1 3 -1 3 -1 3 -1 3 -1 

2 1 2 1 2 1 2 1 2 1 
1 -1 1 -1 1 -1 1 -1 1 -1 

S 5.101 00 3.473 2.061 

S- Xcs 

I I I 1 I I I 1 

2 -1 2 -1 2 -1 2 -1 

3 1 1 1 3 1 1 1 

1 -1 2 -1 2 -1 3 -1 

2 2 2 1 2 2 

I - I I - I I -I 1 -I 
5.841 ,o 6.574 1.828 
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